Главная страница
Навигация по странице:

  • В отличие, например, от клеток печени, мозг работает только «на кислороде», и аэробный гликолиз - это единственный возможный вариант существования всех без исключения нейронов

  • Поэтому, еще не дойдя до нейронов, мы можем отметить две линии защиты гематоэнцефалического барьера

  • Там, где нет барьеров

  • Известно, что рвота может возникать не только вследствие механического раздражения задней стенки глотки, но и при наличии токсинов, попавших в кровь

  • Когда нарушается проницаемость

  • ГЭБ. Первое свидетельство о существовании гэб было получено в 1885 году


    Скачать 23.65 Kb.
    НазваниеПервое свидетельство о существовании гэб было получено в 1885 году
    Дата25.10.2019
    Размер23.65 Kb.
    Формат файлаdocx
    Имя файлаГЭБ.docx
    ТипДокументы
    #91867


    Первое свидетельство о существовании ГЭБ было получено в 
    1885 году Паулем Эрлихом. Он обнаружил, что введённый в кровеносное русло крысы краситель распространился по всем органам и тканям, кроме мозга[2]. В 1904 году он высказал неверное предположение о том, что краситель не проникает в ткань мозга при внутривенном введении, так как в нем много жира, и он отталкивает краскуЮжноафриканский хирург Эдвин Гольдман (1862—1913), ученик Эрлиха, обнаружил в 1909 году, что введённый внутривенно краситель трипановый синий не проникает в ткань мозга, но окрашивает сосудистое сплетение его желудочков[4]. В 1913 году он показал, что краситель, введенный в спинномозговую жидкость собаки или лошади, проникает в ткань головного и спинного мозга, а периферические органы и ткани при этом не окрашиваются[5]. На основании этих опытов Гольдман предположил наличие барьера между мозгом и кровью, который задерживает нейротоксические вещества. В 1898 году венские патологи Артур Бидль (1869—1933) и Рудольф Кра́ус (1868—1932) показали, что при введении желчных кислот в кровеносное русло нейротоксический эффект не возникал, однако при инъекции непосредственно в ткань мозга развивалась кома. Немецкий невропатолог Макс Левандовский повторил опыты Бидля и Крауса с гексацианоферратом калия. Получив схожие результаты, он впервые использовал термин «Blut-Hirn-Schranke» (перегородка между кровью и мозгом, 1900),
    Термин «гемато-энцефалический барьер» (фр. barrière hémato-encéphalique) был введён в научный обиход[10] швейцарским, а затем советским физиологом Линой Соломоновной Штерн (первой женщиной — членом Академии наук СССР) в совместном со своими студентами Эрнестом Ротлиным и Раймондом Готье сообщении Женевскому медицинскому обществу (Société de Biologie et Médecine) за 21 апреля 1921 года[13][14]:

    Строение и функции барьера

    Именно от бесперебойной работы гематоэнцефалического барьера зависит наша жизнь. Ведь наш головной мозг потребляет пятую часть всего количества кислорода и глюкозы, и при этом его вес составляет не 20% всей массы тела, а около 2%, то есть потребление мозгом питательных веществ и кислорода в 10 раз выше среднего арифметического значения.

    В отличие, например, от клеток печени, мозг работает только «на кислороде», и аэробный гликолиз - это единственный возможный вариант существования всех без исключения нейронов. В том случае, если в течение 10-12 секунд питание нейронов прекращается, то человек теряет сознание, а после остановки кровообращения, находясь в состоянии клинической смерти, шансы на полное восстановление функции мозга существуют только на протяжении 5 -6 минут.

    Это время увеличивается при сильном охлаждении организма, но при нормальной температуре тела окончательная гибель мозга происходит через 8-10 минут, поэтому только интенсивная деятельность ГЭБ позволяет нам быть «в форме».

    Известно, что многие неврологические заболевания развиваются только вследствие того, что нарушена проницаемость гематоэнцефалического барьера, в сторону его повышения.

    Строение гематоэнцефалического барьера включает в себя особую структуру капилляров. Известны следующие особенности, приводящие к появлению барьера:

    • плотные контакты между эндотелиальными клетками, выстилающими капилляры изнутри.

    В других органах и тканях эндотелий капилляров выполнен «небрежно», и между клетками есть большие промежутки, через которые происходит свободный обмен тканевой жидкостью с периваскулярным пространством. Там, где капилляры формируют гематоэнцефалический барьер, клетки эндотелия расположены очень плотно, и герметичность не нарушается;

    • энергетические станции – митохондрии в капиллярах превышает физиологическую потребность в таковых в других местах, поскольку гематоэнцефалический барьер требует больших затрат энергии;

    • высота клеток эндотелия существенно ниже, чем в сосудах другой локализации, а количество транспортных ферментов в цитоплазме клетки значительно выше. Это позволяет отвести большую роль трансмембранному цитоплазматическому транспорту;

    • эндотелий сосудов в своей глубине содержит плотную, скелетообразующую базальную мембрану, к которой снаружи прилегают отростки астроцитов;

    Кроме особенностей эндотелия, снаружи от капилляров существуют особые вспомогательные клетки – перициты. Что такое перицит? Это клетка, которая может снаружи регулировать просвет капилляра, а при необходимости может обладать функциями макрофага, к захвату и уничтожению вредных клеток.

    Поэтому, еще не дойдя до нейронов, мы можем отметить две линии защиты гематоэнцефалического барьера: первая – это плотные соединения эндотелиоцитов и активный транспорт, а вторая – это макрофагальная активность перицитов.

    Далее гематоэнцефалический барьер включает в себя большое количество астроцитов, которые и составляют наибольшую массу этой гистогематической преграды. Это небольшие клетки, которые окружают нейроны, и, по определению их роли, умеют «почти всё».

    Они постоянно обмениваются веществами с эндотелием, контролируют сохранность плотных контактов, активность перицитов и просвет капилляров. Кроме того, головному мозгу нужен холестерин, но он не может проникнуть из крови ни в ликвор, ни пройти сквозь гематоэнцефалический барьер. Поэтому астроциты берут на себя его синтез, помимо основных функций.

    Кстати, одним из факторов патогенеза рассеянного склероза является нарушение миелинизации дендритов и аксонов. А для образования миелина нужен холестерин. Поэтому роль дисфункции ГЭБ в развитии демиелинизирующих заболеваний является установленной, и в последнее время изучается..


    Там, где нет барьеров

    Но, оказывается, в некоторых местах ГЭБ не составляет единую «стену» защиты, а нем имеются отверстия. Они нужны для тех веществ, которые вырабатываются головным мозгом и отправляются на периферию в качестве команд: это гормоны гипофиза. Поэтому есть свободные участки, как раз в зоне гипофиза, и эпифиза. Они существуют, чтобы гормоны и нейротрансмиттеры могли свободно проникать в кровь.

    Существует и другая зона, свободная от ГЭБ, которая находится в районе ромбовидной ямки или дна 4 желудочка головного мозга. Там находится рвотный центр. Известно, что рвота может возникать не только вследствие механического раздражения задней стенки глотки, но и при наличии токсинов, попавших в кровь. Поэтому именно в этой области и существуют особые нейроны, которые постоянно производят «мониторинг» качества крови на наличие вредных веществ.

    Как только их концентрация достигнет определенной величины, эти нейроны активируются, вызывая чувство тошноты, а затем и рвоту. Справедливости ради нужно сказать, что не всегда рвота связана с концентрацией вредных веществ. Иногда, при значительном повышении внутричерепного давления (при гидроцефалии, менингитах) рвотный центр активируется вследствие прямого избыточного давления при развитии синдрома внутричерепной гипертензии. Поэтому развивается так называемая центральная, или мозговая рвота, которая может наступить внезапно, и без всяких признаков тошноты..

    Когда нарушается проницаемость


    Гематоэнцефалический барьер и его функции могут страдать при многих заболеваниях. Конечно, классическим примером служат инфекции, при которых токсины и бактериальные антигены могут поражать барьер и повышать его проницаемость. Например, это происходит при менингитах и энцефалитах, когда возбудитель определяется в ликворе и на оболочках головного мозга.

    Но в этом есть и положительный момент: после нарушения функции барьера сквозь него могут проникать антибактериальные препараты, которые в норме совсем не могут через него проникнуть, и, благодаря этому факту, антибиотики, проникающие через барьер, позволяют эффективно справиться с инфекцией.

    Часто нарушается проницаемость при развитии миелинизации – рассеянном склерозе, остром рассеянном энцефаломиелите. Медленно, но неуклонно разрушение функции барьера происходит при сахарном диабете. Чем дольше время заболевания, и чем выше уровень гликемии, тем больше нарушается барьерная функция. При этом не так страшно возникновение гипогликемии, которая, хоть и является испытанием голодом для нейронов, быстро заканчивается и не успевает навредить.

    Гипергликемия гораздо страшнее, поскольку она может вызвать поражение нервной системы на различных уровнях, например, полинейропатия также может развиться при наличии сахарного диабета.
    При ишемическом и геморрагическом инсульте также происходит очаговое нарушение барьера, соответствующее развитию перифокальной зоны некроза. Различные опухоли, которые вызывают отек вещества мозга и его компрессию, также способствуют повышению проницаемости сосудов головного мозга.

    В заключение нужно сказать, что такой гистогематический барьер, как ГЭБ, является одним из самых совершенных в организме. Он имеет несколько уровней защиты, снабжается энергией в 10 раз лучше, чем обычные зоны капиллярного газообмена, и позволяет сохранять гомеостаз центральной нервной системы, что дает ей возможность полностью сосредоточиться на управлении витальными функциями и на высшей нервной деятельности.
    ГЛЮКОЗА
    Глюкоза Мозг потребляет около 60% глюкозы крови, т.е. около 450 калорий ежедневно. Глюкоза – один из немногих субстратов, которые пересекают ГЭБ. В период голодания энергию телу дают жирные кислоты. Раньше считалось, что они не проникают через ГЭБ. В печени жирные кислоты конвертируются в кетоновые тела. Кетоновые тела – дополнительный источник энергии для мозга, они свободно преодолевают ГЭБ. В клетках мозга (клетках глии) есть рецепторы к инсулину и глюкагону, но они не влияют на потребление глюкозы, поэтому снабжение клеток мозга всецело зависит от содержания глюкозы в крови и от количества переносчиков. Глюкоза сама управляет своим собственным переносом через ГЭБ подобно тому, как она сама управляет синтезом и секрецией инсулина в бета-клетках поджелудочной железы. Но в целом именно ГЭБ определяет, сколько глюкозы поступает в мозг. Глюкоза не растворяется в липидах, поэтому не может преодолеть ГЭБ путем простой диффузии. Для ее переноса необходимы специальные транспортные белки. В мозге находят 4 типа переносчиков глюкозы: GLUT1, GLUT2, GLUT3 и GLUT4. GLUT1 – основной переносчик, который забирает глюкозу с люминального слоя ГЭБ. В этом процессе инсулин не участвует


    написать администратору сайта