Реферат Лурье нефть 2. Подготовка нефти к транспорту
Скачать 183 Kb.
|
Российский Государственный Университет нефти и газа им. И. М. Губкина «Подготовка нефти к транспорту». выполнила: Тащилкина Д.А. гр. ТП-04-3 проверил: проф. Лурье М.В. Москва 2006 г. ПОДГОТОВКА НЕФТИ К ТРАНСПОРТУ. Не смотря на то, что добыча нефти на начальном этапе разработки нефтяных месторождений, как правило, происходит из фонтанирующих скважин практически без примеси воды, на каждом месторождении наступает такой период, когда из пласта вместе с нефтью поступает вода сначала в малых, а затем все в больших количествах. Примерно две трети всей нефти добывается в обводненном состоянии. Пластовые воды, поступающие из скважин различных месторождений, могут значительно отличаться по химическому и бактериологическому составу. При извлечении смеси нефти с пластовой водой образуется эмульсия, которую следует рассматривать как механическую смесь двух нерастворимых жидкостей, одна из которых распределяется в объеме другой в виде капель различных размеров. Наличие воды в нефти приводит к удорожанию транспорта в связи с возрастающими объемами транспортируемой жидкости и увеличением ее вязкости. Присутствие агрессивных водных растворов минеральных солей приводит к быстрому износу как нефтеперекачивающего, так и нефтеперерабатывающего оборудования. Наличие в нефти даже 0,1% воды приводит к интенсивному вспениванию ее в ректификационных колоннах нефтеперерабатывающих заводов, что нарушает технологические режимы переработки и, кроме того, загрязняет конденсационную аппаратуру. Легкие фракции нефти (углеводородные газы от этана до пентана) являются ценным сырьем химической промышленности, из которого получаются такие продукты, как растворители, жидкие моторные топлива, спирты, синтетический каучук, удобрения, искусственное волокно и другие продукты органического синтеза, широко применяемые в промышленности. Поэтому необходимо стремиться к снижению потерь легких фракций из нефти и к сохранению всех углеводородов, извлекаемых из нефтеносного горизонта для последующей их переработки. Современные комплексные нефтехимические комбинаты выпускают как различные высококачественные масла и топлива, так и новые виды химической продукции. Качество вырабатываемой продукции во многом зависит от качества исходного сырья, т. е. нефти. Если в прошлом на технологические установки нефтеперерабатывающих заводов шла нефть с содержанием минеральных солей 100—500 мг/л, то в настоящее время требуется нефть с более глубоким обессоливанием, а зачастую перед переработкой нефти приходится полностью удалять из нее соли. Наличие в нефти механических примесей (породы пласта) вызывает абразивный износ трубопроводов, нефтеперекачивающего оборудования, затрудняет переработку нефти, образует отложения в холодильниках, печах и теплообменниках, что приводит к уменьшению коэффициента теплопередачи и быстрому выходу их из строя. Механические примеси способствуют образованию трудноразделимых эмульсий. Присутствие минеральных солей в виде кристаллов в нефти и раствора в воде приводит к усиленной коррозии металла оборудования и трубопроводов, увеличивает устойчивость эмульсии, затрудняет переработку нефти. Количество минеральных солей, растворенных в воде, отнесенное к единице ее объема, называется общей минерализацией. При соответствующих условиях часть хлористого магния (MgCl) и хлористого кальция (CaCl), находящихся в пластовой воде, гидролизуется с образованием соляной кислоты. В результате разложения сернистых соединений при переработке нефти образуется сероводород, который в присутствии воды вызывает усиленную коррозию металла. Хлористый водород в растворе воды также разъедает металл. Особенно интенсивно идет коррозия при наличии в воде сероводорода и соляной кислоты. Требования к качеству нефти в некоторых случаях довольно жесткие: содержание солей не более 40 мг/л при наличии воды до 0,1%. Эти и другие причины указывают на необходимость подготовки нефти к транспорту. Собственно подготовка нефти включает: обезвоживание и обессоливание нефти и полное или частичное ее разгазирование. Природный газ, получаемый с промыслов, содержит посторонние примеси: твердые частицы (песок и окалину), конденсат тяжелых углеводородов, водяные пары и часто сероводород и углекислый газ. Присутствие твердых частиц в газе приводит к быстрому износу соприкасающихся с газом деталей компрессоров. Твердые частицы засоряют и портят арматуру газопровода и контрольно-измерительные приборы; скапливаясь на отдельных участках газопровода, они сужают его поперечное сечение. Жидкие частицы, оседая в пониженных участках трубопровода, также вызывают уменьшение площади его поперечного сечения. Они, кроме того, оказывают корродирующее действие на трубопровод, арматуру и приборы. Влага в определенных условиях приводит к образованию гидратов, выпадающих в газопроводе в виде твердых кристаллов. Гидратные пробки могут полностью закупорить трубопровод. Сероводород — весьма вредная примесь. В количествах, больших 0,01 мг на 1л воздуха рабочей зоны, он ядовит. При промышленном использовании газа содержащийся в нем сероводород отрицательно сказывается на качестве выпускаемой продукции. В присутствии влаги сероводород вызывает сильную коррозию металлов. Углекислый газ вреден главным образом тем, что он снижает теплоту сгорания газа. Перед поступлением в магистральный газопровод газ должен быть осушен и очищен от вредных примесей. Кроме того, газ подвергают одоризации, то есть вводят в него компоненты, придающие ему резкий и неприятный запах. Одоризация позволяет более быстро обнаружить утечки газа. Подготовка газа к транспорту проводится на специальных установках, находящихся на головных сооружениях газопровода. Основные методы отделения воды от нефти Процессы разрушения нефтяных эмульсий предполагают последовательное осуществление таких операций, как сближение и флокуляция капель, разрушение бронирующих оболочек, коагуляция капель диспергированной воды до размеров, достаточных для дальнейшего их слияния под действием силы тяжести и затем осаждения укрупненных глобул на дно деэмульсационного аппарата. Капли, сближаясь, постепенно вылавливают защитный слой. Если силы достаточно для полного разрушения бронирующих оболочек, капли сливаются. Применяют ряд технологических приемов обезвоживания нефти. Выбор способа обезвоживания нефти и эффективность работы сооружений, для этого предназначенных, в значительной степени зависит от количества воды, а также от состояния, в котором она находится. Вода, содержащаяся в сырой нефти, в некоторых случаях оказывается в свободном, т.е. недиспергированном, состоянии. Такая вода выделяется нефти путем осаждения. Чаще вода в сырой нефти находится в диспергированном состоянии в виде эмульсии воды в нефти. Имеются две разновидности таких эмульсий: механические нестабилизированные и и стабилизированные поверхностно-активными веществами. Это различие эмульсий являются весьма существенным при обезвоживании нефти. Вода из нестабилизированных эмульсий сравнительно легко отделяется путем обычного отстаивания, а также путем отстаивания с умеренным обогревом. Для отделения воды из стойких мелкодисперсных стабилизированных эмульсий требуются более сложные приемы, такие как интенсивное нагревание, химическая обработка, электрическая обработка, а также комбинирование этих приемов. При проектировании сооружений для обезвоживания нефти при конкретных производственных условиях необходимо проводить исследование нефтей, подвергаемых обезвоживанию. При таких исследованиях выявляется содержание воды в нефти, вид и число примесей в воде, а также состояние, в котором вода находится в нефти. Процессы обезвоживания и обессоливания совершенно аналогичны, так как вода извлекается из нефтей вместе с растворенными в ней минеральными солями. При необходимости, для более полного обессоливания, можно подавать дополнительно в нефть пресную воду, которая растворяет минеральные соли. К механическим способам обезвоживания относятся: отстаивание, центрифугирование и фильтрация. Отстаивание применяется для обработки нестойких эмульсий. При этом взвешенные частицы расслаиваются вследствие разности плотностей компонентов. В расчетах, связанных с проектированием отстойников, скорости падений частиц воды в нефти вычисляются по формулам: при 2 < Rе < 500 : при Re > 500 : Анализ показывает, что основными факторами, влияющими на эффективность разделения эмульсий, являются: плотность жидкостей, составляющих эмульсию (различие плотностей фаз эмульсий является основной причиной, вызывающей их гравитационное разделение); вязкость жидкостей, составляющих эмульсию, особенно вязкость сплошной фазы, т.е. дисперсионной среды (этот фактор оказывает значительное влияние на эффективность обезвоживания нефти); диаметр частиц дисперсной фазы (данный фактор имеет большое значение, так как скорость падения капли дисперсной фазы возрастает пропорционально квадрату ее диаметра); ускорение движения частиц, которое в поле естественного тяготения равно ускорению свободного падения; площадь поверхности отстаивания. Выявление указанных факторов и характера их влияния позволяют наметить технические приемы повышения эффективности разделения эмульсий. Принципиальными основами этих приемов являются: повышение температуры обрабатываемых эмульсий, которое снижает вязкость жидкостей, составляющих эмульсию, и уменьшает поверхностное натяжение на границе раздела фаз (на этом принципе основаны термические методы обезвоживания нефти); увеличение размеров частиц выделяемой диспергированной жидкости за счет различных приемов деэмульсации, в частности, деэмульсация при помощи химических реагентов и электрического поля (на этом принципе основаны химические и электрические методы обезвоживания нефти); увеличение скорости движения частиц дисперсной фазы путем замещения естественной силы тяжести более мощной центробежной силой. При этом способе на воду и механические примеси действует центробежная сила. Плотность воды и механических примесей выше плотности нефти, и частицы под действием центробежной силы прижимаются к стенке и, коагулируя, стекают вниз. Но метод центрифугирования низкопроизводителен, сложен, дорог и широкого применения на промыслах не нашел; увеличение полезной площади отстаивания без увеличения общей площади отстойника. На этом основано применение параллельных пластин в горизонтальных отстойниках и разделительных дисков в сепараторах. Эффективность разделения эмульсий снижается при наличии в них взвешенных частиц, плотность которых мало отличается от плотности, дисперсной среды (сплошной фазы). Не поддаются очистке механическими методами стойкие стабилизированные мелкодисперсные эмульсии. Значительная часть эмульсий воды в нефти относится к этой категории. Отрицательное влияние на разделение эмульсий оказывают неблагоприятные гидравлические условия отстаивания, такие как турбулентность, конвекция потоков, перемешивание и др. Значительное новышение эффективности разделения нефтяных эмульсий достигается путем комбинированного использования гравитационного отстаивания в сочетании с термическими, химическими и электрическими методами обработки нефти в процессе ее обезвоживания. Механическое обезвоживание нефти Основная разновидность механических приемов обезвоживания нефти - гравитационное отстаивание. Применяют два вида режимов отстаивания периодический и непрерывный, которые соответственно осуществляются в отстойниках периодического и непрерывного действия. В качестве отстойников периодического действия обычно применяют цилиндрические отстойные резервуары (резервуары отстаивания), аналогичные резервуарам, которые предназначены для хранения нефти. Сырая нефть, подвергаемая обезвоживанию, вводится в резервуар при помощи распределительного трубопровода (маточника). После заполнения резервуара вода осаждается в нижней части, а нефть собирается в верхней части резервуара. Отстаивание осуществляется при спокойном (неподвижном) состоянии обрабатываемой нефти. По окончании процесса обезвоживания нефть в вода отбираются из отстойного резервуара. Положительные результаты работы отстойного резервуара достигаются только в случае содержания воды в нефти в свободном состоянии или в состоянии крупнодисперсной нестабилизированной эмульсии. Различают горизонтальные и вертикальные отстойники непрерывного действия. Горизонтальные отстойники подразделяются на продольные и радиальные. Продольные горизонтальные отстойники в зависимости от формы поперечного сечения могут быть прямоугольные и круглые. В гравитационных отстойниках непрерывного действия отстаивание осуществляется при непрерывном потоке обрабатываемой жидкости через отстойник. Термическое обезвоживание нефти Одним из основных современных приемов обезвоживания нефти является термическая или тепловая обработка, которая заключается в том, что нефть, подвергаемую обезвоживанию, перед отстаиванием нагревают. Нагрев вызывает разрушение эмульсии воды в нефти и способствует коалесценции мелких капель воды в более крупные. В водонефтяной эмульсии на поверхности частиц воды образуются бронирующие слои, состоящие из асфальто-смолистых веществ и парафинов. При обычной температуре эти слои создают прочную структурную оболочку, которая препятствует слиянию капель. При повышении температуры вязкость веществ, составляющих защитные оболочки, значительно уменьшается. Это приводит к снижению прочности таких оболочек, что облегчает слияние глобул воды. Кроме того, в результате нагревания понижается вязкость нефти, что способствует ускорению выделения воды из нефти путем отстаивания. В сочетании только с отстаиванием такая обработка применяется редко. В современных условиях тепловая обработка обычно используется как составной элемент более сложных комплексных методов обезвоживания нефти, например, в составе термохимического обезвоживания (в сочетании с химическими реагентами и отстаиванием), в комплексе с электрической обработкой и т.д. Нагревание нефти, подвергаемой обезвоживанию, осуществляется в специальных нагревательных установках. Разработано большое число разновидностей таких установок. Нагреватели устанавливают в технологической линии обезвоживания нефти после отделения (сепарации) из нефти газов, но ранее ввода нефти в отстойник. Стабилизация нефти Добываемые нефти могут содержать в различных количествах растворенные газы (азот, кислород, сероводород, углекислоту, аргон и другие) и легкие углеводороды. При движении нефти от забоя скважины до нефтеперерабатывающего завода из-за недостаточной герметизации систем сбора, транспорта и хранения часто полностью теряются растворенные в ней газы и происходят значительные потери легких нефтяных фракций. При испарении легких фракций, таких как метан, этан и пропан, частично уносятся и более тяжелые углеводороды (бутан, пентан и др.). Как известно, чем чаще нефть контактирует с атмосферой и чем продолжительней контакт с ней, тем больше потери легких фракций. Предотвратить потери нефти можно путем полной герметизации всех путей движения нефти. Однако несовершенство существующих систем не позволяет практически сделать это. Следовательно, необходимо газы и легкие фракции нефти отобрать в условиях нефтепромысла и направить их для дальнейшей переработки, тем самым снизить способность нефти к испарению. Основную борьбу с потерями нефти необходимо начинать с выхода ее из скважины. Ликвидировать потери легких фракций нефти можно в основном применением рациональных систем сбора нефти и попутного нефтяного газа, а также сооружением установок по стабилизации нефти для ее последующего хранения и транспорта. Под стабилизацией нефти следует понимать извлечение легких углеводородов, которые при нормальных условиях являются газообразными, для дальнейшего их использования в нефтехимической промышленности. В настоящее время для стабилизации нефти на промыслах используют в основном метод сепарации. Применяют сепараторы различных конструкций, из которых наибольшее распространение получили гравитационные, жалюзийные и центробежные (гидроциклонные). В гравитационных сепараторах осаждение капельной и твердой взвесей из газового потока происходит под действием силы тяжести. Высокая степень разделении газа и жидкости достигается при очень малых скоростях газа. Установленная практикой оптимальная скорость газа, при которой степень отделения нефтяной взвеси составляет 75—85%, равна 0,1 м/с при давлении 6 МПа. Жалюзийные сепараторы позволяют достичь более высокой степени очистки газа от взвешенной нефти, чем гравитационные. Установленная на выходе такого сепаратора жалюзийная насадка отбивает значительную часть капелек нефти, не осевших под действием гравитационной силы. В гидроциклонных сепараторах отделение газа от нефти происходи за счет отбрасывания центробежной силой более тяжелых капель нефти к периферии, т.е. к стенкам сепаратора, по которым она стекает вниз. ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ УСТАНОВОК ПОДГОТОВКИ НЕФТИ Сбор и подготовка нефти и попутного газа на площадях месторождений, начинающиеся вблизи устья скважин и заканчивающиеся на установках подготовки нефти и газа, являются единой технологической системой. Существует сравнительно много технологических схем по подготовке нефти, однако их следует рассматривать совместно с системами сбора нефти и газа. Рассмотрим одну из таких систем. Напорная система сбора Напорная система сбора (см. рис.) действует следующим образом. Из скважины нефть под давлением поступает на автоматическую групповую замерную установку, где поочередно замеряется дебит всех скважин, а затем вся нефть подается на участковую сепарационную установку. Дебит скважины замеряется жидкостным расходомером с предварительным отделением газа в циклонном сепараторе. После прохождения расходомера нефть и газ снова смешиваются и подаются на участковую сепарационную установку, где на сепараторе первой ступени при давлении 4—5 кгс/см2 газ отделяется и подается на газоперерабатывающий завод. Нефть с пластовой водой и оставшимися растворенными газами насосами перекачивается на центральный сборный пункт, где проходит вторую ступень сепарации через концевые сепараторы и подается на установку комплексной подготовки или в сырьевые резервуары. Газ второй ступени сепарации компрессорной станцией направляется на газоперерабатывающий завод. Данная напорная система сбора полностью герметизирована, что исключает потери газа и легких фракций нефти. Она позволяет производить подготовку нефти на центральном пункте нескольких месторождений, расположенных на расстоянии до 100 км. Однако длительный совместный транспорт нефти и воды может привести к созданию стойких эмульсий, и при высокой обводненности нефти могут увеличиться эксплуатационные расходы на транспорт. Тем не менее это одна из перспективных систем сбора нефти, которая широко применяется в настоящее время. Существует сравнительно большое число технологических схем по подготовке нефти, газа и воды. Сами установки по подготовке могут размещаться в любом пункте системы сбора, начиная от скважины и кончая головными сооружениями магистральных нефтепроводов. Рис. Напорная система сбора нефти, газа и воды: 1 — выкидные линии; 2 — гидроциклонные сепараторы; 3 — расходомеры жидкости; 4 — сборные напорные коллекторы; 5 — сепараторы первой ступени; 6 — центробежные насосы; 1 — сепаратор второй ступени; 8 — сепаратор третьей ступени; 9 — сырьевые резервуары; КС — компрессорная станция; ГПЗ — газоперерабатывающий завод. Целесообразность размещения установок подготовки нефти в том или ином пункте определяется в каждом конкретном случае технико-экономическим анализом возможных вариантов. Установлено, что наименьшие капитальные вложения и эксплуатационные затраты на подготовку нефти возможны при размещении установок в местах наибольшей концентрации нефти (сборные пункты, товарные парки, головные сооружения). Оптимальной технологической схемой подготовки нефти к транспорту следует считать такую, которая при наименьших затратах в отведенное технологическое время позволяет получать нефть с допустимым содержанием воды, солей и с необходимой глубиной стабилизации. В настоящее время проводят комплексную подготовку нефти в районах промыслов, поэтому на основных нефтяных месторождениях созданы комплексные установки по подготовке нефти, которые объединяют процессы обезвоживания, обессоливания и стабилизации. На рис. приведена принципиальная технологическая схема установки комплексной теплохимической подготовки нефти. Рис. Установка комплексной теплохимической подготовки нефти. Нефть из скважины после групповых замерных установок по коллектору подается в концевую совмещенную сепарационную установку КССУ 2, в которую через смеситель 1 подается горячая вода из отстойника 6, содержащая отработанный деэмульгатор. Под действием тепла пластовой воды и остатков деэмульгатора, поступающих из отстойника 6 в КССУ 2, происходит частичное разделение эмульсии на нефть, воду и газ. Отделившаяся вода подается в нефтеловушки 20, а выделившийся газ поступает на газобензиновый завод. Нефть из КССУ 2 вместе с оставшейся водой насосом 3 прогоняется через теплообменники 4 и пароподогреватели 5, затем нагретая нефть поступает в отстойник 6 для окончательного отделения нефти от воды. Отделенная вода уносит с собой основное количество солей из нефти. Для более полного обессоливания нефть из отстойника 6 направляется на смешение с горячей пресной водой, которая подается насосом 17 с предварительным подогревом пароподогревателем 15 и обескислороживанием в емкости 16. После тщательного перемешивания пресной воды с нефтью, содержащей соли, эмульсия направляется в отстойник 7, где доводится до требуемой кондиции по содержанию солей. После обессоливания и отделения воды нефть при необходимости может быть направлена из отстойника 7 на дополнительное обессоливание и обезвоживание в электродегидратор 8, а если содержание воды и солей в пределах нормы, то нефть, минуя электродегидратор 8, подается прямо в вакуумный сепаратор 9. Вакуумные компрессоры 12 забирают из сепаратора 9 газ, из которого при прохождении холодильника 10 и гидроциклонного сепаратора 11 выделяется основное количество легких углеводородов. Конденсат из сепаратора 11 отправляется на газобензиновый завод, а газ направляется на специальные установки для полной деэтанизации. Перед теплообменником 4 в нефть вводится деэмульгатор, воздействующий на поверхностные свойства пограничных слоев двух фаз эмульсии. Деэмульгатор также вводится вместе с подачей пресной воды перед отстойником 7. Дайной системой предусмотрена очистка сточных вод с последующей подачей их на нагнетательные скважины для закачки в пласт. |