Главная страница

практические работы по естествознанию. практические работы естествознание. Практическая работа 1 Сформулируем кратко три основных принципа научного познания действительности


Скачать 328.1 Kb.
НазваниеПрактическая работа 1 Сформулируем кратко три основных принципа научного познания действительности
Анкорпрактические работы по естествознанию
Дата13.01.2023
Размер328.1 Kb.
Формат файлаdocx
Имя файлапрактические работы естествознание.docx
ТипПрактическая работа
#885611

ПРАКТИЧЕСКАЯ РАБОТА №1

  1. Сформулируем кратко три основных принципа научного познания действительности.

1. Причинность. Первое и достаточно емкое определение причинности содержится в высказывании

В современном понимании причинность означает связь между отдельными состояниями видов и форм материи в процессе ее движения и развития. Возникновение любых объектов и систем, а также изменение их свойств во времени имеют свои основания в предшествующих состояниях материи; эти основания называются причинами, а вызываемые ими изменения - следствиями.

2. Критерий истины. Естественно-научная истина проверяется (доказывается) только практикой: наблюдениями, опытами, экспериментами, производственной деятельностью. Если научная теория подтверждена практикой, то она истинна. Естественно-научные теории проверяются экспериментом, связанным с наблюдениями, измерениями и математической обработкой получаемых результатов. Подчеркивая важность измерений, выдающийся ученый Д.И. Менделеев (1834- 1907) писал:

Наука началась тогда, когда люди научились мерить; точная наука немыслима без меры.

3. Относительность научного знания. Научное знание (понятия, идеи, концепции, модели, теории, выводы из них и т.п.) всегда относительно и ограничено.

  1. Само понятие «картина мира» выражает целостный образ мира, сформированный под воздействием разных видов знания. Картина мира включает в себя такой срез знаний, полученный из разных наук, который можно обозначить, как «научная картина мира». Научная картина мира это система общих принципов, понятий, законов, наглядных представлений, формируемая на основе синтеза научных знаний. Она в значительной мере обусловлена представлениями лидирующей фундаментальной области науки. Выделяют три типа научной картины мира:Само понятие «картина мира» выражает целостный образ мира, сформированный под воздействием разных видов знания. Картина мира включает в себя такой срез знаний, полученный из разных наук, который можно обозначить, как «научная картина мира». Научная картина мира —

• общенаучная (выражающая совокупные знания разных наук о человеке, природе и обществе);

• естественнонаучная (объединяющая данные естественных наук, касающихся знаний о природе) и система общих взглядов на общество;

• частнонаучная (выражающая фрагменты действительности, формируемые на базе той или иной науки: физическая, геологическая и пр.).

Итак, естественнонаучная картина мира является частью научной картины мира вообще и выражает систему основных знаний о природе. Она возникает на основе синтеза фундаментальных открытий и результатов исследования всех отраслей и дисциплин естествознания. Появление новых знаний, открытие законов заставляют ученых пересматривать положения прежней научной картины мира, формулировать ее новые идеи и принципы. В связи с этим можно говорить об эволюции научной картины мира вообще и естественнонаучной в частности.

Первой естественнонаучной картиной мира, которая базировалась уже на данных собственно научного знания, являлась механистическая, построенная на абсолютизации механической формы движения материи. Ее формирование связывается с именем Г. Галилея, установившего законы движения свободно падающих тел и сформулировавшего принцип относительности в механике. Он же впервые применил и экспериментальный метод в исследовании природы, а также использовал математическую обработку полученных результатов в эксперименте. Большую роль в становлении механистической картины мира сыграли открытые И. Кеплером законы движения планет. Тем самым было доказано, что между миром земным и небесным не существует абсолютного противопоставления, а законы движения небесных тел в принципе не отличаются от законов движения тел земных.

Электромагнитная картина мира.Датский физик Г.Х. Эрстед впервые обнаружил связь между электрическим и магнитным полями. В дальнейшем электромагнитная теория была развита в трудах М. Фарадея, Дж. Максвелла. Было обосновано, что наряду с веществом существует и такая форма материи, как поле, причем физические поля могут иметь разную природу: например, гравитационное (известное со времени Ньютона), электромагнитное. Максвеллом была высказана догадка о существовании поперечных электромагнитных волн, могущих распространяться в пустоте со скоростью, не зависящей от длины волны, что позволило ему выдвинуть идею постоянства скорости света в вакууме. Поскольку электромагнитные волны, как было доказано, распространяются с конечной скоростью, постольку электромагнитное взаимодействие между электрическими зарядами не может происходить мгновенно, согласно принципу дальнодействия. Поэтому был введен принцип близкодействия, по которому один из зарядов создает электромагнитное поле, распространяющееся с конечной скоростью и до­стигающее второго заряда, воздействует на него. Следовательно, взаимодействие между зарядами немыслимо без участия промежуточного звена —начале XX века в физике, да и других естественных науках, были сделаны открытия, коренным образом изменившие прежнюю естественнонаучную картину мира.В конце XIX —начале XX века в физике, да и других естественных науках, были сделаны открытия, коренным образом изменившие прежнюю естественнонаучную картину мира.

Основой новой современной картины мира, получившей название квантово-полевой, лежит квантовая механика. Это новая теория, которая описывает состояние и движение микрообъектов материального мира. Она устанавливает метод описания и законы движения микрочастиц, к которым относятся элементарные частицы, атомы, атомные ядра, молекулы. Квантовая механика также занимается изучением связи величин, характеризующих частицы, с физическими величинами, измеряемыми экспериментальным путем. Законы квантовой механики дают возможность изучить строение атомов, а также установить природу химической связи и объяснить периодическую систему элементов, исследовать свойства элементарных частиц.

Естественнонаучная картина мира - это система важнейших принципов и законов, лежащих в основе функционирования и развития мира Природы, проверенные и доказанные представления об устройстве мира. В описании такой картины мира, как правило, используют­ся понятные современникам аналогии и символи­ка. Но с течением времени по мере обнаружения новых научных фактов естественнонаучная картина мира меняется, чтобы соответствовать новому уровню развития естественных наук. В формировании такой обобщенной картины мира наиболее важное значение приоб­ретают концепции и теории, наиболее развитые в конкретный исторический период, пришедшие из наиболее развитых отраслей естество­знания. В то же время некоторые другие разделы естественнонаучного знания могут оставаться или вообще невостребованными, или малопроявленными, второстепенными.





  1. ?

  2. Родоначальниками современной науки считаются Френсис Бэкон (1561-1626), Галилео Галилей (1564-1642) и Уильям Гарвей (1578- 1657), которые осознали необходимость органического единства опыта и теории, индукции и дедукции.

Ф. Бэкон в своем главном сочинении «Новый органон»[1] (1620) писал: «Наш путь и наш метод состоят в следующем: мы извлекаем не опыты из опытов, а причины и аксиомы из практики и опытов, а из причин и аксиом — снова практику и опыты, как верные истолкователи природы... Лучше же всего продвигается вперед естественное исследование, когда физическое завершается в математическом» (,Лункевич В. В. Указ. соч.).

Галилей реализовал экспериментальный метод на практике, придав ему такие современные черты, как создание идеализированной модели реального процесса, абстрагирование от несущественных факторов, многократное повторение опыта... Он теоретически и экспериментально опроверг утверждение Аристотеля о том, что скорость падения пропорциональна весу тела, указал, что шар, катящийся по горизонтальной плоскости, должен двигаться равномерно, пока не кончится плоскость (подход к закону инерции). С помощью телескопа Галилей открыл горы на Луне и пятна на Солнце, продемонстрировав, что небесные тела отнюдь не совершенные светильники ночи, как им приписывала традиция. Обнаружив спутники Юпитера, которые образуют как бы гелиоцентрическую систему в миниатюре, Галилей окончательно похоронил геоцентрическую космологию.

Эпоха научной биологии отсчитывается с 1628 г., когда вышла книга У. Гарвея «Исследование о движении сердца и крови у животных». До этого в медицине господствовали взгляды древнеримского врача Галена, который считал, что вены и артерии — это две независимые системы, два «дерева» кровеносных сосудов, по каждой из которых кровь движется в основном от сердца и поглощается в органах. Гарвей же представил экспериментальные доказательства, подкрепленные убедительной теорией того, что артерии и вены являются частями замкнутого круга кровообращения, по которому кровь циркулирует под воздействием мощного насоса — сердца. Гарвей впервые серьезно применил математику в науке о живом: он вычислил количество крови, проходящей через сердце за час. Получилась величина, сравнимая с весом человека. Очевидно, этот результат был несовместим со старым представлением о кровообращении.

  1. На первый взгляд, наука и нравственность так далеко отстоят друг от друга, что странно даже ставить вопрос об их соотношениях и пересечениях.

Наука - это совокупность теоретических представлений о мире, ориентированная на выражение в понятиях и математических формулах объективных характеристик действительности, то есть тех, которые не зависят от сознания.

Нравственность (мораль), напротив, является совокупностью ценностей и норм, регулирующих поведение и сознание людей с точки зрения противоположности добра и зла. Нравственность строится на человеческих оценках, повелевает действовать определенным образом в зависимости от наших жизненных ориентиров - значит, она занята ничем иным, как действующими субъектами и их субъективностью.

Таким образом, между наукой и нравственностью обнаруживается разрыв, ров, пропасть, их территории различны, проблемы лежат в разных плоскостях, и остается неясным, как можно рассуждать о связи науки и нравственности. Действительно, тот факт, что газы при нагревании расширяются, не может быть морально оценен. И то, что на все предметы действует на земле закон притяжения, заставляя их падать, это тоже факт, о котором бессмысленно говорить, хороший он или плохой, нравственный или безнравственный. Это просто закон. То, что в природе наблюдается борьба за существование и согласно цепям питания "все всех едят" мы в сущности тоже не можем отнести ни к добру, ни к злу - так уж устроен мир, и не мы его устраивали. Казалось бы, разговор окончен, и дальше размышлять не о чем. Однако при ближайшем рассмотрении оказывается, что все обстоит не так просто. Ибо, во-первых, нравственность проникает всюду, где встречаются два субъекта и где речь идет об их нуждах и угрозах для них. А во-вторых, наука не существует в неких чисто духовных сферах, не витает над миром, она - дело вполне человеческое и касается огромного множества человеческих интересов.
ПРАКТИЧЕСКАЯ РАБОТА №2

  1. Фундаментальные взаимодействия (силы) - это наиболее глубокие физические структурные связи Вселенной, природы. Все действующие в природе силы можно свести к небольшому числу взаимодействий. В начале XX века их было известно два - гравитационное и электромагнитное. В 1930-х годах было обнаружено еще два - слабое и сильное. Цель физики - объединить все взаимодействия в одно и тем самым создать общую физическую теорию материи (единую теорию элементарных частиц).

Сильное взаимодействие обусловливает связь между протонами и нейтронами в ядрах атомов. Оно является наиболее интенсивным из всех фундаментальных взаимодействий, радиус действия его порядка 10-15 м (примерный радиус атомного ядра). При определенных условиях сильное взаимодействие очень прочно связывает частицы, в результате чего образуются материальные системы с высокой энергией связи - атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие, примерами которого могут служить силы Кулона и силы Ампера, примерно в сто раз менее интенсивно, чем сильное. Силы электромагнитного взаимодействия медленно убывают с расстоянием (обратно пропорционально квадрату расстояния), и радиус его действия принимают равным бесконечности. Носителями электромагнитного взаимодействия является не имеющий заряда фотон – квант э/м поля. В процессе э/м взаимодействия электроны и атомные ядра соединяются в атомы, атомы в молекулы.

Слабое взаимодействие вызывает превращения элементарных частиц и обусловлено обменом промежуточными бозонами. Например, бета-распад. Радиус действия слабого взаимодействия составляет порядка 10-18.

Гравитационное взаимодействие, проявлением которого служит сила тяжести, является наименее интенсивным. Силы гравитационного взаимодействия медленно убывают с расстоянием, и радиус его действия считают бесконечным.

  1. Вещество и поле различаются по массе покоя

Частицы вещества обладают массой покоя, электромагнитное и гравитационное поля - нет. Однако в микромире каждому полю сопоставляется частица (квант этого поля) и каждая частица рассматривается как квант соответствующего поля. Для ядерных полей (мезонного, нуклонного и т.д.) это различие уже неверно - кванты этих полей обладают конечной массой покоя. 

Вещество и поле различаются по закономерностям движения

Скорость распространения электромагнитного и гравитационного полей всегда равна скорости света в пустоте (с), а скорость движения частиц вещества всегда меньше с. Однако наличие ядерных полей ликвидирует и эту границу. Для квантов этих полей как раз характерна невозможность движения со скоростью, равной с .

Вещество и поле различаются по степени проницаемости

Вещество мало проницаемо, электромагнитное и гравитационное поля - наоборот.

На уровне микромира и эта граница исчезнет. Для таких частиц, как нейтрино, вещество оказывается весьма проницаемым, с другой стороны, ядерные поля могут обладать очень малой проницаемостью.

Вещество и поле различаются по степени концентрации массы и энергии

Очень большая - у частиц вещества и очень малая - у электромагнитного и гравитационного полей. В микромире и это различие стирается. Ядерные поля обладают огромной концентрацией массы и энергии, и даже кванты электромагнитного поля могут достигать концентраций энергии, значительно превосходящих таковую у частиц вещества.

Вещество и поле различаются как корпускулярная и волновая сущности

Это различие исчезает на уровне микропроцессов. Частицы вещества обладают волновыми свойствами, а непрерывное в макроскопических процессах электромагнитное поле обнаруживает на уровне микромира свой корпускулярный аспект.

Общий вывод:

Различие вещества и поля верно характеризует реальный мир в макроскопическом приближении. Это различие не является абсолютным и при переходе к микрообъектам ярко обнаруживается его относительность. В микромире понятия «частицы» (вещество) и «волны» (поля) выступают как дополнительные характеристики, выражающие внутренне противоречивую сущность микрообъектов.

  1. Микромир – пространственная протяжённость порядка 10-6 см и менее; основные объекты (структурные уровни материи) – молекулы, атомы и составляющие их элементарные частиц; основные типы взаимодействия – электромагнитное, сильное и слабое. 

Также элементарные частицы можно классифицировать следующим образом:

1) По спину: нафермионы(полуцелый спин) ибозоны(целый спин).

2) По времени жизни частицы можно разбить на:

1) стабильные(электрон, протон, фотон, нейтрино);

2) квазистабильные— распадающиеся вследствие электромагнитного и слабого взаимодействий (нейтрон);

3) нестабильные— распадающиеся вследствие сильного взаимодействия (π-мезоны).

3) По массе все частицы разделены на три класса:

  • барионы(тяжелые): протон, нейтрон, гипероны, часть резонансов. Из них стабилен протон. Все они - фермионы. Имеют барионный заряд +1. Участвуют во всех типах взаимодействий.

  • мезоны(средние, промежуточные): пи-мезоны, ка-мезоны и др. Нестабильны. Являются бозонами (нулевой или целочисленный спин). Барионного заряда нет. Участвуют во всех типах взаимодействий. Барионы + мезоны = адроны.

  • лептоны(легкие): мюон, нейтрино, электрон. Мюоны являются фермионами, не участвуют в сильных взаимодействиях и обладают лептонным зарядом.



  1. Классификация элементарных частиц

Элементарными частицами называют фундаментальные, т.е. неделимые, количества вещества или энергии. В соответствии с этим определением проводят наиболее общую классификацию элементарных частиц, которая выделяет элементарные частицы, представляющие собой структурные единицы вещества, и элементарные частицы, передающие фундаментальные взаимодействия и являющиеся квантами соответствующих полей.

Элементарные частицы вещества являются фермионами (т.е. имеют полуцелый спин) и бывают двух типов: кварки– основной строительный материал таких частиц, как протоны, нейтроны и –лептоны, к числу которых относятся электроны, мюоны и нейтрино.

Элементарные частицы, передающие взаимодействие, являются бозонами (обладают целым спином) и бывают четырех типов: гравитоны, передающие гравитационное взаимодействие, фотоны, передающие электромагнитное взаимодействие, слабые бозоны– для слабого взаимодействия иглюоны– для сильного ядерного взаимодействия.

  1. Корпускулярно-волновые свойства частиц

В 20-х годах XX столетия было установлено, что любая частица имеет корпускулярно-волновую природу. Согласно теории Л. де Бройля (1924 г.), каждой частице с импульсом   соответствует волновой процесс с длиной волны λ, т.е. λ = h / p. Чем меньше масса частицы, тем больше длина волны. Для элементарных частиц В. Гейзенберг сформулировал принцип неопределенности, согласно которому невозможно одновременно определить положение частицы в пространстве и ее импульс. Следовательно, нельзя рассчитать траекторию движения электрона в поле ядра, можно лишь оценить вероятность его нахождения в атоме с помощью волновой функции ψ, которая заменяет классическое понятие траектории. Волновая функция ψ характеризует амплитуду волны в зависимости от координат электрона, а ее квадрат ψ2 определяет пространственное распределение электрона в атоме. В наиболее простом варианте волновая функция зависит от трех пространственных координат и дает возможность определить вероятность нахождения электрона в атомном пространстве или его орбиталь. Таким образом, атомная орбиталь (АО) – область атомного пространства, в котором вероятность нахождения электрона наибольшая. Волновые функции получаются при решении основополагающего соотношения волновой механики – уравнения Шредингера. (Точное решение получается для атома водорода или водородоподобных ионов, для многоэлектронных систем используются различные приближения). Поверхность, ограничивающая 90–95 % вероятности нахождения электрона или электронной плотности, называют граничной. Атомная орбиталь и плотность электронного облака имеют одинаковую граничную поверхность (форму) и одинаковую пространственную ориентацию. Атомные орбитали электрона, их энергия и направление в пространстве зависят от четырех параметров – квантовых чисел.

ПРАКТИЧЕСКАЯ РАБОТА №3

  1. Пространство – форма сосуществования материальных объектов. Время – порядок последовательной смены явлений и состояний материи.

Естественнонаучные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе твердых физических тел, занимающих определенный объем. Здесь основными были представления о пространстве и времени как о субстанции – нечто относительно устойчивое, то, что существует само по себе и не зависит ни от чего другого (Аристотель, Демокрит).Первая законченная теория пространства – геометрия Евклида. Она была создана примерно 2 тыс. лет назад и до сих пор считается образцом научной теории. Геометрия Евклида оперирует идеальными математическими объектами, которые существуют как бы вне времени, и в этом смысле пространство в этой геометрии – идеальное математическое пространство. Такой взгляд позволил И. Ньютону сформулировать концепцию абсолютного пространства и времени. Абсолютное пространство существует независимо от времени и независимо от наполняющей его материи, остается всегда одинаковым и неподвижным. Абсолютное время при этом течет равномерно и независимо ни от чего, и иначе называется длительностью. Течение абсолютного времени изменяться не может. Время и пространство составляют как бы вместилища самих себя и всего существующего.

Г. Лейбниц рассматривал пространство как порядок сосуществования тел, а время – как порядок отношения и последовательность событий. Это понимание составило сущность реляционной концепции пространства и времени, которая противостояла их пониманию как абсолютных.

Есть концепции (Беркли, Мах и др.), которые ставят пространство и время в зависимость от человеческого сознания, выводя их из способности человека переживать и упорядочивать события, располагать их одно подле другого.

Современное понимание пространства и времени было сформулировано А. Эйнштейном в специальной теории относительности (1905 г.), по-новому интерпретировавшей концепции пространства и времени и давшей им естественнонаучное обоснование.

  1. Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов.

Переход от классической механики к специальной теории относительности можно представить так:

  • на теоретическом уровне - это переход от абсолютных и субстанциальных пространства и времени к абсолютному и субстанциальному единому пространству - времени,

  • на эмпирическом уровне - переход от относительных и экстенсионных пространства и времени Ньютона к реляционному пространству и времени Эйнштейна.

Специальная теория относительности (СТО) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей).

найдено на ru.wikipedia.org

О́бщая теория относительности (ОТО) — общепринятая в настоящее время теория тяготения, описывающая тяготение как проявление геометрии пространства-времени. Предложена Альбертом Эйнштейном в 1915 — 1916 годах.

  1. Гравита́ция (притяже́ние, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между материальными телами, обладающими массой. В приближении малых по сравнению со скоростью света скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.

Гравитация играет крайне важную роль в структуре и эволюции Вселенной (устанавливая связь между плотностью Вселенной и скоростью её расширения), определяя ключевые условия равновесия и устойчивости астрономических систем. Без гравитации во Вселенной не было бы планет, звёзд, галактик, чёрных дыр. Гравитационное сжатие является основным источником энергии на поздних стадиях эволюции звёзд (белые карлики, нейтронные звезды, чёрные дыры).

«Парадоксы» общей теории относительности

Как и в специальной теории относительности, в ОТО "парадоксы" позволяют не только отвести рассуждения, основанные на так называе­мом "здравом смысле" (обыденном, житейском опыте), но и дать правиль­ное, научное объяснение "парадоксу", который, как правило, является проявлением более глубокого понимания природы. И это новое понима­ние дается новой теорией, в частности, ОТО.




  1. Симметрия в физике — это свойство физических законов, детально описывающих поведение системы, оставаться неизменными (инвариантными) при определенных преобразованиях, которым могут быть подвергнуты входящие в них величины.

Изотропность — это одинаковость свойств физических объектов в разных направлениях. Изотропность и однородность пространства как простейшие виды симметрии появились уже на заре человеческого познания.

Среди пространственно-временных принципов симметрии можно выделить следующие:

  • Сдвиг системы отсчета не меняет физических законов, т.е. все точки пространства равноправны. Это означает однородность пространства.

  • Поворот системы отсчета пространственных координат оставляет физические законы неизменными, т.е. все свойства пространства одинаковы по всем направлениям, иными словами пространство — изотропно. Например, свойства палки не меняются, если ее переворачивать в воздухе. А вот свойства корабля значительно изменятся, если он перевернется в воде, так как на границе раздела воды и воздуха свойства пространства разные. Таким образом, симметрия пространства означает, что в пространстве действия физических законов нет выделенных точек и направлений или что оно однородно.

  • Сдвиг во времени не меняет физических законов, т.е. все моменты времени объективно равноправны. Время однородно. Это означает, что можно любой момент времени взять за начало отсчета. Этот принцип означает закон сохранения энергии, который основан на симметрии относительно сдвигов во времени. Период колебаний маятника «ходиков» не изменится, если отсчитать его в полдень или в полночь, т.е. законы физики не зависят от выбора начала отсчета времени.

  • Законы природы одинаковы во всех инерциальных системах отсчета. Этот принцип относительности является основным постулатом специальной теории относительности (СТО) Эйнштейна. В соответствии с принципом симметрии можно произвести переход в другую систему отсчета, движущуюся относительно данной системы с постоянной по величине и направлению скорости. Например, можно перейти из вагона поезда в машину, если уравнять их скорости.

  • Зеркальная симметрия природы — отражение пространства в зеркале — не меняет физических законов.

  • Фундаментальные физические законы не меняются при обращении знака времени.


написать администратору сайта