Главная страница
Навигация по странице:

  • 2. Алгоритм выполнения.

  • Практическое задание 1 Поиск и анализ инновационных технических решений в области средств защиты от воздействия шума и вибрации


    Скачать 390.92 Kb.
    НазваниеПрактическое задание 1 Поиск и анализ инновационных технических решений в области средств защиты от воздействия шума и вибрации
    Дата11.03.2023
    Размер390.92 Kb.
    Формат файлаdocx
    Имя файла2302-4095.docx
    ТипДокументы
    #980684
    страница14 из 17
    1   ...   9   10   11   12   13   14   15   16   17

    Практическое задание 14 «Поиск и анализ инновационных технических решений в области средств защиты от воздействия патогенных микроорганизмов»



    Тема 3 «Поиск описаний технических решений с использованием автоматизированных информационных систем»
    1.Цель: Получить практические навыки поиска и анализа инновационных технических решений в области средств защиты от воздействия патогенных микроорганизмов.
    2. Алгоритм выполнения.

    1. Изучить алгоритм поиска и анализа инновационных технических решений в области охраны труда.

    2. Ознакомиться с теоретической частью электронного учебника.

    3. Оформить результаты в виде таблицы.

    Бланк выполнения задания №14


    Таблица– Форма для выполнения задания

    № п/п

    Наименование инновационного технического решения

    Описание документа источника

    Сведения об авторах и организации

    Описание сущности инновационного решения

    Результаты анализа достоинств и недостатков

    1

    Способ и средство индивидуальной защиты от патогенных микроорганизмов и вирусов





    АКЦИОНЕРНОЕ ОБЩЕСТВО «НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ «ТЕПЛОМАШ» (RU)

    Булыгин Владимир Григорьевич (RU)
    Голубев Даниил Владимирович (RU)
    Марр Юрий Николаевич (RU)
    Спиридонов Владислав Константинович (RU)
    Филановский Владимир Александрович (RU)

    1. Способ индивидуальной защиты от патогенных микроорганизмов и вирусов, включающий всасывание воздуха из окружающей атмосферы и последующую его обработку в каналах воздушного тракта перед подачей в подмасочное пространство к защищаемым частям головы, которая заключается в фильтрации, последующем повышении давления, дальнейшем обеззараживании ультрафиолетовыми лучами в диапазоне длин волн 220–300 нм и тепловлажностной обработке воздуха, при этом в процессе обработки воздуха осуществляют контроль и регулирование параметров процессов обработки воздуха, отличающийся тем, что перед тепловлажностной обработкой воздуха его поток разделяют на две части, одну из которых направляют в подмасочное пространство, а другую – на рециркуляцию за счет подмешивания к потоку между фильтрацией и повышением давления.

    2. Способ по п.1, отличающийся тем, что расход воздуха, подаваемого на обработку, превышает расход, необходимый для осуществления фазы вдоха.

    3. Способ по п.1, отличающийся тем, что температуру потока, подаваемого на обеззараживание ультрафиолетовым излучением, поддерживают на уровне, обеспечивающем наиболее эффективную работу источника ультрафиолетового излучения.

    4. Способ по п.3, отличающийся тем, что при необходимости температуру повышают перед обеззараживанием с помощью нагревания.

    5. Способ по п.4, отличающийся тем, что требуемую температуру корректируют изменением в нужном направлении расхода воздуха, соответственно меняя частоту вращения вентилятора по команде термодатчика.

    6. Способ по п.4, отличающийся тем, что охлаждение воздуха перед подачей его в подмасочное пространство осуществляют посредством наружного испарительного охлаждения.

    7. Способ по п.4, отличающийся тем, что охлаждение воздуха перед подачей его в подмасочное пространство осуществляют контактом с предварительно аккумулированным холодом.


    Изобретение относится к медицине, а именно к способу и средству индивидуальной защиты органов дыхания, глаз, кожного и волосяного покрова головы людей от вирусных и бактериальных инфекций, передающихся воздушно-капельным и контактным путем.

    Известны средства индивидуальной защиты (далее – «СИЗ») преимущественно в виде масок с использованием как фильтрации воздуха, так и обеззараживания ультрафиолетовыми лучами. Известно СИЗ в виде маски, закрепляемой на голове и защищающей органы дыхания и зрения, с присоединенной к передней части маски напротив носа бактерицидной камерой (Защитная медицинская маска: патент RU173502 на полезную модель, Российская Федерация, заявка RU2017109633, заявл. 22.03.2017, опубл. 29.08.2017). Бактерицидная камера снабжена входным фильтром и источником ультрафиолетового излучения (далее – «УФИ»), расположенным внутри камеры и соединенным с блоком электропитания. Источник УФИ выполнен в виде малогабаритной амальгамной лампы. Внутренняя поверхность бактерицидной камеры выполнена из материала, отражающего УФИ.

    Недостатком данного СИЗ является ограничение поля зрения и движения головы из-за выступающей перед маской бактерицидной камеры. Также к недостаткам данного устройства можно отнести необходимость преодолевать сопротивление фильтров бактерицидной камеры напором дыхания, что при длительном использовании приводит к дискомфорту и снижению эффективности фильтрации.

    Также известно СИЗ, у которого бактерицидная камера может быть не только закреплена на маске, но и смонтирована в отдельном блоке, соединенном с маской гибким шлангом (Средство индивидуальной защиты от вирусной инфекции: патент RU2404816 на изобретение, Российская Федерация, заявка RU2009136159, заявл. 29.09.2009, опубл. 2010.11.27). Бактерицидная камера данного устройства содержит входной слой фильтра и особым образом установленные светодиоды, спектр излучения которых губителен для вируса.

    Недостатком данного устройства является необходимость преодолевать сопротивления фильтров бактерицидной камеры напором дыхания, что при длительном использовании приводит к дискомфорту и снижению эффективности фильтрации. При этом в варианте реализации вышеприведенного изобретения, включающем расположение бактерицидной камеры в отдельном блоке с соединением их посредством гибкого шланга, появляется дополнительный недостаток: дополнительные помехи для пользователя из-за шланга, частично закрывающего обзор.


    2

    способ воздействия на патогенные микроорганизмы и устройство для воздействия на патогенные микроорганизмы





    ЗАО "Информационно-волновой Центр "БИГ"




    Устройство для воздействия на патогенные микроорганизмы, содержащее носитель с информацией о метаболической активности патогенных микроорганизмов, установленный в экранирующем корпусе с крышкой, отличающееся тем, что носитель включает информацию о метаболической активности поврежденных образцовых клеток до состояния, при котором процесс восстановления активности клеток становится невозможен, в корпусе установлен источник магнитного поля для воздействия на носитель информации.

    2. Устройство по п.1, отличающееся тем, что источник магнитного поля выполнен в виде постоянного магнита прямоугольной, круглой или кольцевой формы.

    3. Устройство по п. 1, отличающееся тем, что источник магнитного поля выполнен в виде соленоида.

    4. Устройство по пп. 1 - 3, отличающееся тем, что носитель информации выполнен в виде полупроводникового кристалла.

    5. Устройство по пп. 1 - 4, отличающееся тем, что в качестве носителя информации используют кристалл полупроводникового диода или транзистора, который подключен к источнику тока и связан с блоками коммуникации и индикации.

    6. Устройство по п.5, отличающееся тем, что все узлы устройства отделены друг от друга экранирующими перегородками.

    7. Способ воздействия на патогенные микроорганизмы, включающий подавление метаболической активности образцовых клеток с последующей записью их собственного электромагнитного излучения на носитель информации, отличающийся тем, что подавление метаболической активности образцовых клеток осуществляют путем их повреждения до состояния, при котором процесс восстановления активности клеток в полном объеме становится невозможен, а запись информации выполняют путем воздействия КВЧ-излучением на носитель при его непосредственном контакте с клетками, после чего носитель корпусируют биологически нейтральным материалом и устанавливают в устройство по пп.1 - 6 для воздействия на микроорганизмы.

    Изобретение относится к информационно-волновой медицине и медицинской технике и может быть использовано для терапевтического воздействия при патологических состояниях человека или животных, вызванных патогенными микроорганизмами, включая бактерии, простейших, вирусы, грибы и прионы.

    Известны средства, использующие информационно-волновые воздействия на организм человека или животных. Принцип действия таких средств основан на организации внешнего управляющего воздействия на информационное поле организма. Как известно, это внешнее управляющее воздействие представляет собой электромагнитное поле низкой интенсивности, которое имитирует собственные информационные сигналы организма в период, когда происходят нарушения условий их нормального функционирования.

    Известен способ терапии и диагностики и реализующая его система по заявке EA N 960039, МКИ (6) A 61 B 5/04, опубл. 30.06.97. Известный способ состоит в том, что организуется внешний контур управления информационным полем организма, для чего информационное поле, с помощью которого осуществляется управление в организме и которое также отражает его взаимодействие с внешней средой, снимается с организма, обрабатывается и возвращается тому же или иному организму. Одной из задач обработки является выделение физиологических и патологических колебаний, которые возвращаются в организм человека с определенными амплитудами и спектральными соотношениями, с целью восстановления нормального гомеостаза биофизического и биохимического уровней его функционирования.

    Система, реализующая этот способ, содержит ряд пространственно разнесенных датчиков (электродов). Снятые электромагнитные колебания подвергаются адаптивной пространственно-временной и частотной обработке, нелинейной фильтрации, сепарированию в соответствующих блоках и возвращаются на ту же или иную систему пространственно разнесенных электродов, расположенную на том же или ином организме.

    3

    Способ обнаружения патогенных микроорганизмов в объектах внешней среды

    Патент РФ

    № 2218411

    (опубликован

    10.12.2003)

    Автор(ы): Ефременко В.И., Тюменцева И.С., Касторная М.Н., Афанасьев Е.Н., Жарникова И.В., Жданова Е.В.

    Патентообладатель(и): Ставропольский научно-исследовательский противочумный институт

    Способ осуществляется следующим образом: вначале сенсибилизируют лунки пластиковых планшетов соответствующими антителами (иммуноглобулинами), затем туда вносят исследуемые пробы. При наличии в пробе искомого антигена (микроорганизма) он иммобилизуется на поверхности лунки за счет реакции "антиген-антитело". После отмывания лунок от несвязавшихся компонентов реакции туда вносят соответствующий иммунопероксидазный конъюгат, который фиксируется на антигене. Удалив промыванием несвязавшиеся компоненты реакции, в лунки вносят флюорогенный субстрат - люминол, благодаря которому регистрируется в виде эмиссии света высвобождающаяся в щелочной среде в присутствии перекиси водорода энергия из пероксидазы. Хемилюминесцентные реакции регистрируют любыми приборами, чувствительными к эмиссии видимого света, используя для этого сцинциллеционные счетчики или люминометры [Биотехнология, иммунология и биохимия особо опасных инфекций, Саратов, 1989, с.3-9]. При этом данные реакции не чувствительны к мутности, так как приборы регистрируют общий испускаемый свет независимо от его рассеивания. Время измерения этих реакций составляет несколько секунд, так как свет испускается в виде коротких вспышек, протекающих за время перемешивания реагентов. Когда хемилюминесценция используется для регистрации ферментных реакций, световая эмиссия непрерывно возрастает, так что чувствительность диагностической системы может быть измерена в зависимости от времени инкубации. Чувствительность хемилюминесцентной реакции может достигать 102-103 м.т./ мл.

    Недостатком способа является его непригодность для исследования объектов внешней среды: почвы, воды, смывов и т.д. из-за серьезных фоновых помех; необходимость использования дорогостоящих и труднодоступных полистироловых микропланшет и потеря времени на их сенсибилизацию; исследование ограниченных объемов проб при концентрации в них микроорганизмов более 102-103 м.т./ мл.

    Цель предлагаемого изобретения заключается в повышении специфической чувствительности обнаружения патогенных микроорганизмов при их низкой концентрации в пробе, возможности забора проб в неограниченных объемах из объектов внешней среды и исследовании проб с высокой степенью загрязненности при относительной простоте, производительности, возможности полной автоматизации исследования, упрощении анализа.

    Технический результат заявляемого способа достигается тем, что патогенные микроорганизмы из объектов внешней среды селективно концентрируются на МИС с последующей детекцией реакции "антиген-антитело" хемилюминесцентным иммунным анализом, при этом реакцию ставят в стеклянных пробирках.

    По отношению к прототипу заявляемый способ имеет следующие отличительные признаки: вместо полистероловых пробирок (планшет, кювет) используют магноиммуносорбенты, при этом:

    а) у магноиммуносорбентов (МИС) большая удельная поверхность и соответственно выше емкость сорбции антител;

    б) при использовании МИС эффективнее отмывка от несвязавшихся компонентов;

    в) магноиммуносорбенты (МИС) инертны в реакции хемилюминесценции и не мешают прохождению реакции;

    г) при использовании МИС повышается чувствительность метода хемилюминесценции;

    д) МИС (в отличие от полистероловых планшетов) позволяют проводить исследование проб с высокой степенью загрязненности;

    с) объем исследуемых проб при использовании МИС практически не ограничен.

    Следовательно, использование МИС для селектирования микроорганизмов обусловлено тем, что они обладают возможностью исследования проб в неограниченных объемах, повышенными по сравнению с полистероловыми планшетами адгезивными свойствами и специфической сорбционной емкостью, что обеспечивает повышение специфической чувствительности иммунного анализа.

    Использование ХЛИА для детекции реакции "антиген-антитело" обеспечивает доступность и простоту проведения высокочувствительного анализа. Использование в качестве твердой фазы магносорбентов исключает необходимость иммунной сенсибилизации планшет и создает возможность использования для постановки реакции стеклянных пробирок, что упрощает и удешевляет анализ.

    Таким образом, заявляемый способ имеет явные преимущества перед известными аналогами по специфической чувствительности обнаружения патогенных микроорганизмов, а также простоте и скорости проведения анализа, что дает основание для целесообразности его широкого применения в микробиологической практике.

    Применение традиционных лабораторных методов требует длительных манипуляций по выращиванию и выделению чистой культуры. Тем не менее, специфичность и чувствительность методов выявления патогенных микроорганизмов оставляет желать лучшего.

    С развитием разработок по получению и использованию в микробиологии магноиммуносорбентов (МИС) значительно расширились возможности выделения патогенных микроорганизмов из объектов внешней среды путем их селективного концентрирования на поверхности МИС.

    Известен набор устройств и приспособлений для различных манипуляций с магноиммуносорбентами: для забора, транспортировки и хранения проб, отделения магноиммуносорбента от жидкой фазы, для проведения иммунохимического анализа [Пат. РФ 2098828, G 01 N 33/553, С 12 М 1/00, 10.12.97. Бюл. 34].

    Высокая эффективность использования МИС в эпиднадзоре за различными инфекционными заболеваниями обеспечивается за счет избирательного концентрирования инфекционного агента или его специфических антигенов, возможности максимального освобождения от посторонней микрофлоры путем многократных промываний без потери выделяемых микроорганизмов при исследовании сильно загрязненных проб (канализационные стоки, почва, фекалии и т.п.): высокой чувствительности, позволяющей обнаружить растворимые антигены и токсины в пределах 1 нг, а бактериальные клетки в количестве 1способ обнаружения патогенных микроорганизмов в объектах внешней среды, патент № 2218411102-1способ обнаружения патогенных микроорганизмов в объектах внешней среды, патент № 2218411103 м.к. в пробе, объем которой может достигать нескольких кубических метров жидкости; сокращения времени проведения анализов, связанного с ускорением манипуляций и исключением ряда этапов в ходе анализа (предварительное концентрирование, сенсибилизация планшет для ИФА, фиксирование препаратов для люммикроскопии и т. д.).

    Представляется перспективным использование алюмосиликатных МИС, отличающихся простотой технологии получения, повышенной сорбционной емкостью и чувствительностью [Пат. РФ 2138813, G 01 N 33/543 от 27.09.99, Бюл. 27].

    Детекция реакции "антиген антитело" (Аг-Ат) при селектировании микроорганизмов МИС осуществляют различными методами.

    Известен способ выявления вируса гепатита А в объектах внешней среды, включающий селективное концентрирование вируса на МИС с помощью магнитных ловушек, расположенных в объектах внешней среды (водопроводные трубы, канализационные стоки, водоемы) с последующей детекцией наличия вируса иммуноферментным анализом (ИФА) [Пат. РФ 2065164, G 01 N 33/53 от 10.08.96, Бюл. 22].

    Известен способ лабораторной диагностики возбудителей особо опасных инфекций (ООИ) (чума, холера, сибирская язва, бруцеллез) в объектах внешней среды, включающий избирательное концентрирование микроорганизмов на МИС с последующей постановкой полимеразной цепной реакции (ПЦР) [Пат. РФ N 2165081, G 01 N 33/53 от 10.04.01, Бюл. N 10]. Метод генной диагностики позволяет выявить несколько сотен м.к. в неограниченном объеме исследуемой пробы и идентифицировать инфекционный агент на уровне ДНК. Однако проведение ПЦР дорого, требует специальных помещений, оборудования и приспособлений.

    Выбор метода лабораторной диагностики обуславливается такими факторами как экспрессность, чувствительность, простота исполнения. Сравнительный анализ современных методов, таких как метод флюоресцирующих антител (МФА), ИФА, хемилюминесцентный иммунный анализ (ХЛИА), радиоиммунный анализ (РИА), свидетельствует о том, что все эти методы являются достаточно экспрессными, самые чувствительные из них - ХЛИА и РИА.

    Недостатки РИА, связанные с быстрым распадом меченых реагентов, необходимостью применения специальных мер по технике безопасности при работе с радиоактивными изотонами, высокой стоимостью регистрирующей аппаратуры, сдерживают широкое распространение метода. ХЛИА с развитием аппаратурной базы становится альтернативным РИА-методом.

    Разновидностью люминесценции является хемилюминесцентная реакция, нашедшая применение в диагностике и индикации различных микроорганизмов и их токсинов. Хемилюминесцентными называют химические реакции, при которых вещества переходят в возбужденное состояние, а затем высвобождают накопленную энергию в виде эмиссии света. Применительно к микробиологическим исследованиям один из компонентов специфической реакции "антиген-антитело" конъюгируют (метят) маркером, участвующим в последующем в реакции хемилюминесценции.

    В качестве таких маркеров используют гемин, пероксидазу, глюкозооксидазу и ряд других ферментов и веществ, способных взаимодействовать с соответствующими флюорогенными субстратами, среди которых чаще применяют люминол (5-амино-2,3-дигидрофталазин-1,4-дион) или их производные. В ряде случаев антиген или антитело метят непосредственно флюорогенным маркером, например люминолом.

    Наиболее близким к заявляемому по назначению является хемилюминесцентный иммунный анализ (ХЛИА) для диагностики опасных инфекций [Л.Ф. Зыкин, А.Т. Яковлев. Очерки по лабораторной диагностике опасных инфекций, изд-во Саратовского университета, 1993, с.29-34.]

    4

    Способ воздействия на патогенные микроорганизмы и устройство для воздействия на патогенные микроорганизмы

    Патент РФ

    № 2146540

    (опубликован

    20.03.2000)

    Патентообладатель(и): ЗАО "Информационно-волновой Центр "БИГ"

    Задача, на решение которой направлено изобретение, заключается в создании эффективного способа воздействия на патогенные микроорганизмы, который бы не оказывал при этом воздействия на аутофлору и собственные клетки организма, а также в создании портативного узкоспециализированного устройства для терапевтического эффективного воздействия на отдельный тип патогенного микроорганизма и, кроме того, в создании унифицированного ряда устройств, отличающихся встроенными носителями информации, являющимися частотно-волновыми аналогами отдельных типов поврежденных патогенных микроорганизмов.

    Указанный технический результат достигается тем, что в устройстве для воздействия на патогенные микроорганизмы, содержащем носитель с информацией о метаболической активности патогенных микроорганизмов, установленный в экранирующем корпусе с крышкой, согласно изобретению носитель включает информацию о метаболической активности поврежденных образцовых клеток до состояния, при котором процесс восстановления активности клеток становится невозможен, в корпусе установлен источник магнитного поля для воздействия на носитель информации.

    Указанный результат достигается также тем, что источник магнитного поля может быть выполнен в виде постоянного магнита прямоугольной, круглой или кольцевой формы, а также в виде соленоида.

    Носитель информации в предложенном устройстве может быть выполнен в виде полупроводникового кристалла. В качестве полупроводникового кристалла может быть использован кристалл полупроводникового диода или транзистора, который подключен к источнику тока и связан с блоками коммутации и индикации.

    Указанный технический результат достигается также тем, что все узлы устройства отделены друг от друга экранирующими перегородками.

    В отношении способа технический результат достигается тем, что в способе воздействия на патогенные микроорганизмы, включающем подавление метаболической активности образцовых клеток с последующей записью их собственного электромагнитного излучения на носитель информации, согласно изобретению подавление метаболической активности образцовых клеток осуществляют путем их повреждения до состояния, при котором процесс восстановления активности клеток в полном объеме становится невозможен, а запись информации выполняют путем воздействия КВЧ-излучением на носитель при его непосредственном контакте с клетками, после чего носитель корпусируют биологически нейтральным материалом и устанавливают в устройство для воздействия на микроорганизмы.

    Сущность предлагаемого способа заключается в том, что осуществляют подавление метаболической активности образцовых клеток определенного типа и повреждение их структурно-физиологического состояния любым повреждающим фактором, например, воздействием хлорамина, КВЧ-воздействием, УФ-воздействием. При этом выбор повреждающего фактора зависит от типа патогенного микроорганизма. О степени повреждения судят любым известным методом, например, по степени утечки из клетки УФ-поглощающих веществ до и после воздействия дозы повреждения. Экспериментальным путем было установлено, что при максимально возможной степени утечки из клетки патогенного микроорганизма УФ-поглощающих веществ происходит нарушение функций мембраны и оболочки ядра патогенного микроорганизма, что сопровождается выходом в окружающее пространство нуклеиновых кислот, аминокислот, нуклеотидов и т.п., т.е. происходит конформационно-изометрическое изменение биомолекул. При этом процесс восстановления метаболической активности образцовых клеток в полном объеме становится невозможен.

    Затем в лабораторных условиях осуществляют запись собственного электромагнитного излучения поврежденных клеток путем воздействия КВЧ-излучением на носитель при его непосредственном контакте с клетками, при этом записываемая информация усиливается, после чего носитель информации - частотно-волновой аналог поврежденных клеток патогенного микроорганизма - помещают в устройство, которым осуществляют воздействие на организм человека или животных. Для повышения эффективности способа носитель информации помещают в магнитное поле.

    Осуществление записи в лабораторных условиях (вне устройства воздействия) позволяет исключить при записи влияние различной биоэнергетической информации на носитель информации. Усиление биоэнергетической информации во время записи позволяет получить более четкую структуру частотно-волнового аналога поврежденных клеток, а также повысить стабильность и воспроизводимость записанной информации. При воздействии электромагнитного поля такой структуры на электромагнитное поле патогенного микроорганизма человека или животного происходит резонансное взаимодействие между ними, в результате чего клетки патогенного микроорганизма приобретают состояние, аналогичное записанному на носителе состоянию поврежденного микроорганизма. Так как частотно-волновой аналог приобрел под воздействием электромагнитного поля образцовых клеток определенную структуру, то его взаимодействие с электромагнитными полями биообъекта является также избирательным, т.е. его поле будет взаимодействовать только с электромагнитными полями патогенного микроорганизма данного типа.

    Наличие источника магнитного поля для воздействия на носитель информации позволяет существенно превысить напряженность поля образцовых клеток над напряженностью поля патогенного микроорганизма, а также создает ориентацию в пространстве информационно-волнового воздействия, что, в свою очередь, позволяет повысить эффективность воздействия на патогенный микроорганизм. Экспериментальным путем было установлено, что в качестве источника магнитного поля может быть использован магнит любой формы: прямоугольной, круглой, кольцевой и др., а также соленоид.

    Все узлы устройства отделены друг от друга экранирующими перегородками.

    Экранирующие перегородки в совокупности с экранирующими корпусом и крышкой, выполненными из пластика, покрытого слоем экранирующего материала, образуют защищающий объем, который позволяет защитить носитель информации от "паразитной" самозаписи во время работы устройства, тем самым повысить эффективность его работы и исключить отрицательные воздействия на организм.

    Носитель информации может быть выполнен из любого материала, способного эффективно записывать, сохранять и передавать информацию. Предпочтительным вариантом выполнения для данного изобретения является кристалл полупроводникового прибора, что позволяет создать компактное портативное устройство для воздействия на патогенные микроорганизмы.

    Известны средства, использующие информационно-волновые воздействия на организм человека или животных. Принцип действия таких средств основан на организации внешнего управляющего воздействия на информационное поле организма. Как известно, это внешнее управляющее воздействие представляет собой электромагнитное поле низкой интенсивности, которое имитирует собственные информационные сигналы организма в период, когда происходят нарушения условий их нормального функционирования.

    Известен способ терапии и диагностики и реализующая его система по заявке EA N 960039, МКИ (6) A 61 B 5/04, опубл. 30.06.97. Известный способ состоит в том, что организуется внешний контур управления информационным полем организма, для чего информационное поле, с помощью которого осуществляется управление в организме и которое также отражает его взаимодействие с внешней средой, снимается с организма, обрабатывается и возвращается тому же или иному организму. Одной из задач обработки является выделение физиологических и патологических колебаний, которые возвращаются в организм человека с определенными амплитудами и спектральными соотношениями, с целью восстановления нормального гомеостаза биофизического и биохимического уровней его функционирования.

    Система, реализующая этот способ, содержит ряд пространственно разнесенных датчиков (электродов). Снятые электромагнитные колебания подвергаются адаптивной пространственно-временной и частотной обработке, нелинейной фильтрации, сепарированию в соответствующих блоках и возвращаются на ту же или иную систему пространственно разнесенных электродов, расположенную на том же или ином организме.

    Внесение во внешний контур управления дополнительных информационных полей от других организмов, нозодов, органопрепаратов и т.д., а также естественных и патологических выделений (кровь, слюна, моча, слезы, кусочки ткани, гной и т. д.) позволяет решить задачи диагностики и повысить эффективность терапии.

    Однако известные способ и система отличаются сложностью и могут быть реализованы только в условиях стационара. Между тем, как часто бывает на практике, постановка диагноза не представляет затруднений, как например, в случае диагностирования заболеваний, вызванных патогенными микроорганизмами. В этих случаях целесообразно иметь простой портативный прибор для осуществления терапевтического воздействия на патогенные микроорганизмы.

    Наиболее близким способом и устройством к предлагаемому изобретению является техническое решение по патенту РФ N 2055604 от 13.09.93, МКИ A 61 M 37/00.

    Известный способ воздействия на патогенные микроорганизмы включает подавление метаболической активности образцовых клеток патогенного микроорганизма с последующей записью их собственного электромагнитного излучения на носитель информации, которым осуществляют терапевтическое воздействие на патогенные микроорганизмы.

    Устройство, реализующее этот способ, содержит носитель с информацией о метаболической активности патогенных микроорганизмов, установленный в экранирующем корпусе с крышкой. Указанный носитель информации выполняет функции приема, передачи и запоминания и включает в себя приемник, генератор и блок памяти, выполненные в виде единого элемента. Кроме того, устройство содержит блок изменения температуры, подключенный к единому элементу, выполненный в простейшем случае в виде источника электрической энергии. Носитель информации через блок коммутации связан с источником электрической энергии. Запись информации (при приеме) и считывание информации (при передаче) осуществляются при проведении полного цикла изменения температуры материала носителя с помощью блока изменения температуры. В результате лечебного воздействия метаболическая активность клеток патогенного микроорганизма устанавливается аналогичной активности образцовых клеток.

    Так как в процессе осуществления способа выполняют только подавление метаболической активности образцовых клеток, то возможен процесс восстановления метаболической активности клеток патогенного микроорганизма после прекращения лечебного воздействия, что снижает эффективность способа и реализующего его устройства.

    Поскольку и запись, и считывание информации осуществляются единым элементом, то при записи вместе с полезной информацией о метаболической активности образцовых клеток возможна запись информационных полей окружающих устройство предметов, а при считывании (воздействии на объект) возможна одновременная запись сложного информационно-волнового воздействия как организма в целом (человека, животного), так и отдельных его клеток, а также окружающих устройство предметов, что отрицательно сказывается на эффективности способа и устройства, т.к. распознать управляющее воздействие в этом сложном сигнале и адекватно на него отреагировать практически невозможно. Кроме того, в результате воздействия электромагнитных полей, возбуждаемых отдельными узлами устройства, возможна запись информации о состоянии материалов, из которых выполнены эти узлы. Эта "паразитная" информация накладывается на полезную информацию, что также снижает эффективность устройства.

    Низкая эффективность является существенным недостатком известного способа и реализующего его устройства.
    1   ...   9   10   11   12   13   14   15   16   17


    написать администратору сайта