Главная страница
Навигация по странице:

  • 2. Алгоритм выполнения.

  • Практическое задание 1 Поиск и анализ инновационных технических решений в области средств защиты от воздействия шума и вибрации


    Скачать 390.92 Kb.
    НазваниеПрактическое задание 1 Поиск и анализ инновационных технических решений в области средств защиты от воздействия шума и вибрации
    Дата11.03.2023
    Размер390.92 Kb.
    Формат файлаdocx
    Имя файла2302-4095.docx
    ТипДокументы
    #980684
    страница12 из 17
    1   ...   9   10   11   12   13   14   15   16   17


    Практическое задание 12 «Поиск и анализ инновационных технических решений в области средств защиты от воздействия лазерного излучения»



    Тема 3 «Поиск описаний технических решений с использованием автоматизированных информационных систем»
    1.Цель: Получить практические навыки поиска и анализа инновационных технических решений в области средств защиты от воздействия лазерного излучения.
    2. Алгоритм выполнения.

    1. Изучить алгоритм поиска и анализа инновационных технических решений в области охраны труда.

    2. Ознакомиться с теоретической частью электронного учебника.

    3. Оформить результаты в виде таблицы.

    Бланк выполнения задания №12


    Таблица– Форма для выполнения задания

    № п/п

    Наименование инновационного технического решения

    Описание документа источника

    Сведения об авторах и организации

    Описание сущности инновационного решения

    Результаты анализа достоинств и недостатков

    1

    устройство защиты оптической системы от воздействия лазерного излучения





    Российская Федерация,от имени которой выступает Государственный заказчик- Федеральное Агентство по атомной энергии (RU),
    Федеральное государственное унитарное предприятие-Российский федеральный государственный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики (ФГУП РФЯЦ ВНИИЭФ) (RU),
    Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП) (RU)

    Бородин Владимир Григорьевич (RU), Белоцерковец Александр Васильевич (RU), Бессараб Александр Владимирович (RU), Потапов Сергей Леонтьевич (RU), Романов Владимр Михайлович (RU), Чарухчев Александр Ваникович (RU)

    Изобретение относится к области оптического приборостроения, в частности к устройствам защиты оптических систем от воздействия лазерного излучения путем обеспечения высокой скорости срабатывания затвора. Устройство содержит установленные на оптической оси объектив для формирования изображения объекта, фотозатвор с приводом, соединенным с электронным узлом, вырабатывающим сигнал для срабатывания затвора, и фотоприемник. Дополнительно за фотозатвором размещены второй объектив и диафрагма, второй объектив установлен так, что плоскости изображения объекта и фотоприемника сопряжены, а диафрагма установлена в его задней фокальной плоскости, при этом фотозатвор размещен в плоскости изображения и выполнен в виде двух параллельных пластин, установленных с возможностью движения в противоположных направлениях нормально к оптической оси, в каждой из пластин выполнены отверстия, образующие решетки, причем решетки фотозатвора и диафрагма выполнены по теореме Котельникова. Технический результат - повышение степени защиты оптических систем от воздействия помехового излучения

    Изобретение относится к оптическому приборостроению, в частности к устройствам управления интенсивностью и направлением света, и может быть использовано для решения широкого круга народо-хозяйственных задач, при создании систем регистрации быстропротекающих процессов, защиты оптических систем от бликов и т.д.

    Проблема защиты оптико-электронных систем от воздействия излучения существует во многих областях техники. Она, в частности, актуальна при защите систем, производящих геодезическую съемку с помощью фотографических систем.

    Регистрацию удаленных объектов производят с помощью оптико-электронных устройств, включающих оптическую часть (объектив), преобразователь светового сигнала в электрический (фотоприемник) и электронную часть (управление и обработка сигнала). Фотоприемник в силу высокой световой чувствительности является наиболее уязвимым для различных световых помех, например случайных бликов от водной поверхности или бликов от наземных технических систем, например строительных и геодезических лазерных дальномеров, помех от лазеров, используемых в лазерном шоу и др. Наиболее опасны блики от лазеров ввиду их высокой яркости. При разработке оптико-электронных устройств учитывают их возможное ослепление в оптическом диапазоне, и поэтому в устройства вводят узлы, защищающие фотоприемник от перегрузок или повреждения световым лазерным пучком.


    2

    ПРОТИВОЛАЗЕРНЫЙ ЗАЩИТНЫЙ СВЕТОФИЛЬТР





    Каданер Генрих Израйлевич (RU)
    Овчинников Борис Валентинович (RU)

    Каданер Генрих Израйлевич (RU)
    Овчинников Борис Валентинович (RU)

    Противолазерный защитный светофильтр для защиты глаз от лазерного излучения в спектральной области 380-1400 нм, включающий поглощающий излучение компонент из цветного оптического стекла и отражающее многослойное диэлектрическое покрытие, отличающийся тем, что длина волны максимума спектрального коэффициента отражения покрытия смещена в длинноволновую область спектра относительно длины волны воздействующего излучения на величину, равную δ=0,2-0,3 от полуширины спектральной полосы отражения диэлектрического покрытия.

    Широкое внедрение лазерных технологий в многочисленные сферы современной производственной и научной деятельности (от медицины до тяжелого машиностроения и горнодобывающих отраслей) выдвигает весьма актуальную и достаточно сложную техническую задачу надежной защиты глаз обслуживающего персонала от вредного воздействия лазерного излучения в спектральном диапазоне прозрачности оптических сред глаза λ=380-1400 нм.

    Так, операторы, обслуживающие лазерные технологические установки, должны быть снабжены средствами индивидуальной защиты (очками), надежно защищающими глаз не только от прямого (фронтального) облучения, но и от наклонных (боковых) лучей в диапазоне углов падения θ=±(0-30°) (ГОСТ Р 12.4.254 - 2010), зеркально отраженных обрабатываемой поверхностью и/или рассеянных на неровностях оборудования рабочей зоны.

    Надежная защита от наклонных пучков излучения требуется и персоналу, не занятому непосредственным выполнением лазерных технологических операций, но находящемуся в помещениях, где такие операции выполняются. В этом случае опасность представляет излучение, достигающее глаз под большими углами падения θ вследствие рассеяния поверхностями помещений и находящимся в них оборудованием.


    3

    АВТОНОМНОЕ ЛАЗЕРНОЕ ЗАЩИТНОЕ УСТРОЙСТВО И СПОСОБ ЕГО ПРИМЕНЕНИЯ ДЛЯ ЗАЩИТЫ ОТ НАПАДЕНИЯ





    Общество с ограниченной ответственностью "Научно-производственное объединение специальных материалов"

    Сильников М.В.
    Михайлин А.И.
    Кулаков С.Л.
    Кулакова А.Ф

    Защитное устройство может быть использовано в качестве индивидуального защитно-осветительного средства, предназначенного для подсветки объектов и защитного светового воздействия при угрозе нападения. Устройство содержит корпус, размещенные в нем блок питания, полупроводниковый лазерный диод и объектив, установленный с возможностью его перемещения вдоль оптической оси. Устройство снабжено цилиндрической линзой, установленной в корпусе на оптической оси объектива с возможностью ее поворота на угол, кратный 90o, относительно исходного положения, за которое принято такое, в котором главное сечение линзы совмещено с плоскостью, перпендикулярной меньшей стороне излучающего торца тела свечения лазерного диода и проходящей через центр его выходного окна. Передний фокус объектива установлен за или перед излучающим торцом тела свечения. Лазерное излучение формируют в виде широкой полосы, затем поворотом цилиндрического линзового элемента преобразуют его в узкую полосу и сканируют объект этой полосой возвратно-поступательным перемещением устройства. Обеспечивается повышение эффективности охранных мероприятий и защиты от нападения за счет более точного и направленного воздействия

    Изобретение относится к оптико-электронному приборостроению и может быть использовано в качестве индивидуального защитно-осветительного средства, предназначенного для подсветки близких и удаленных объектов, защитного светового воздействия на человека или животного в случае угрозы его нападения, а также в качестве сигнального средства.

    Известны лазерные световые устройства, например лазерные указки и целеуказатели, содержащие лазерный полупроводниковый диод и объектив, формирующий на выходе этих устройств лазерное излучение видимого диапазона в виде узкого пучка света. Например, в промышленно выпускаемом лазерном целеуказателе "Барс" (Россия) в корпусе установлен лазерный модуль, представляющий собой конструктивно жестко скрепленные между собой лазерный диод с выходной мощностью порядка 5 мВт и объектив, формирующий расходящийся пучок излучения с выхода диода в узконаправленный коллимированный лазерный пучок света. На малых расстояниях (3÷5 метров) на выходе целеуказателя лазерная марка представляет собой относительно круглое световое пятно, но по мере увеличения расстояния форма светового пятна изменяется и на расстоянии примерно 20÷30 м несколько растягивается. Обычно при разработке целеуказателей и указок стремятся обеспечить минимальный диаметр и круглую форму светового пятна на максимальных расстояниях. При случайном прямом попадании лазерного излучения видимого диапазона в глаза человека или животного может наступить временное ослепление, связанное со световой адаптацией зрения. Однако попадание небольшой круглой световой марки непосредственно в глаз, а тем более в оба, маловероятно.

    Известен автономный лазерный осветительный модуль и способ его применения в качестве защитного устройства, предназначенного для ослабления или временного ухудшения зрения человека с помощью яркого света или ослепляющей вспышки, по патенту США 6007218, F 21 K 7/00, F 21 V 8/00, 1999г. Согласно патенту устройство содержит корпус, размещенные в нем блок питания, выключатель и лазерный осветительный модуль, включающий лазерный излучатель и коллимирующий объектив, установленный с возможностью его перемещения относительно лазера. С целью энергетического и геометрического выравнивания формы и освещенности лазерной марки между полупроводниковым лазерным диодом (излучателем) и объективом установлен световолоконный жгут, свитый петлями. При этом на выходе устройства формируется излучение в виде пучка света круглого сечения.


    4

    Интерференционный светофильтр с перестраиваемой полосой пропускания

    Патент РФ

    № 2515134

    (опубликован

    10.05.2014)

    Автор(ы): Чесноков Владимир Владимирович (RU), Чесноков Дмитрий Владимирович (RU), Михайлова Дарья Сергеевна (RU), Сырнева Александра Сергеевна (RU)

    Патентообладатель(и): Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") (RU)

    Задачей, решаемой настоящим изобретением, является создание оптического фильтра, обладающего узкой спектральной полосой пропускания и одновременно широкой свободной спектральной областью.

    Задача решается тем, что в интерференционном многолучевом светофильтре, содержащем плоскую прозрачную пластину с тонкопленочным прозрачным покрытием одной ее поверхности и оптическую призму ввода излучения, в соответствии с изобретением оптическая призма закреплена плоской гранью на тонкопленочном покрытии вблизи конца пластины, причем показатели преломления призмы и пленки больше показателя преломления пластины.

    Предлагается также вариант интерференционного многолучевого светофильтра, содержащий плоскую прозрачную пластину с тонкопленочным прозрачным покрытием одной ее поверхности, в котором в соответствии с изобретением один конец пластины скошен под острым углом к поверхности тонкопленочного покрытия, причем показатель преломления пленки больше показателя преломления пластины, тогда как излучение вводится в пленку через скошенный конец пластины.

    Предлагается также, что введенное в прозрачную пленку излучение распространяется в ней под углом к поверхности пленки, граничащей с пластиной, меньшим угла полного внутреннего отражения, но большим угла полного внутреннего отражения второй поверхности пластины.

    Предлагается также, что удаленный от места ввода излучения конец пластины выполнен в виде цилиндрической или сферической линзы.

    В качестве прототипа взят интерференционный многолучевой интерферометр Люммера-Герке [Борн М., Вольф Э. Основы оптики. - М.: Гл. ред. физ-мат. лит. Наука. 1970 г. - 856 с]. Интерферометр представляет собой длинную плоскопараллельную пластинку из стекла или кристаллического кварца. Пучок света от источника, лежащего на продольной оси пластинки, входит в нее через призму, укрепленную на одном из концов пластинки, и падает на внутреннюю поверхность последней под углом, немного меньшим угла полного внутреннего отражения. Траектория пучка внутри пластинки представляет собой ломаную линию; из пластинки выходит с обеих ее сторон ряд световых пучков, начинающихся в местах падения пучка пластины изнутри на ее внешнюю сторону. Так как угол падения луча на внутреннюю поверхность ненамного меньше угла полного внутреннего отражения, лучи преломляются на граничной поверхности и выходят в воздушную среду под скользящими углами к поверхности. Отраженные от поверхности внутрь лучи продолжают распространяться по пластине, подобно распространению света в световоде. Вышедшие из пластины лучи собираются линзой и образуют интерференционную картину в ее фокальной плоскости. В связи с большим количеством интерферирующих лучей разрешающая способность интерферометра очень высокая.

    Недостатком прототипа является малая свободная спектральная область, что объясняется большим отношением толщины пластины к длине волны света и высокими порядками интерференции света.

    5

    Составной интерференционный фильтр с изменяемым пропусканием

    Патент РФ

    № 2512089

    (опубликован

    10.04.2014)

    Автор(ы): ЛИ Хайме Антонио (US), ХАББАРД Коби Ли (US)

    Патентообладатель(и): СиПиФИЛМЗ, ИНК. (US)

    Составной интерференционный фильтр, включающий:

    первый полосно-пропускающий интерференционный фильтр, содержащий первый диэлектрический слой, расположенный между двумя отражающими слоями, при этом указанный первый полосно-пропускающий интерференционный фильтр имеет полосу пропускания, центрированную на заданной длине волны и при заданном угле, и имеет первое смещение полосы пропускания;

    второй полосно-пропускающий интерференционный фильтр, содержащий второй диэлектрический слой, расположенный между двумя отражающими слоями, при этом второй полосно-пропускающий интерференционный фильтр имеет полосу пропускания, центрированную на заданной длине волны и при заданном угле, и имеет второе смещение полосы пропускания, отличное от первого смещения полосы пропускания;

    разделительную прокладку, расположенную между указанными первым и вторым полосно-пропускающими интерференционными фильтрами, при этом отличие между первым смещением полосы пропускания и вторым смещением полосы пропускания приводит к уменьшению количества видимого света, пропускаемого через указанный составной интерференционный фильтр под углом 45° к указанному заданному углу, по отношению к количеству видимого света, пропускаемого под заданным углом через указанный составной интерференционный фильтр.

    Благодаря наличию большого количества диэлектрических соединений, из которых можно выбрать нужное, а также благодаря возможности контролировать размеры различных компонентов с высокой точностью можно изготовлять такие полосовые интерференционные фильтры, которые бы пропускали свет в широком диапазоне полос по всему спектру видимого света.

    В настоящее время данная область техники нуждается в новых видах фильтров, преимуществом которых было бы получение полезных фильтрующих эффектов за счет использования оптических свойств традиционных интерференционных фильтров.

    Устройства, отфильтровывающие свет с выбранной длиной волны, хорошо известны и применяются уже много лет. В типичном случае свет из источника белого света или свет, содержащий компоненты с длинами волн из спектра видимого света, фильтруют таким образом, чтобы проходили только нужные длины волн. Среди различных традиционных фильтров, обычно применяющихся в качестве светофильтров, можно назвать абсорбционные светофильтры и интерференционные светофильтры.

    В одном типе интерференционных фильтров применяется диэлектрический слой, который располагают между двумя очень тонкими слоями отражающего материала. Полученный в результате фильтр пропускает свет в пределах некоторой полосы видимого спектра. Однако диапазон длин волн пропускаемого света не является постоянным для всех углов падения. В типичном случае полоса пропускания будет смещаться с изменением угла падения. Следовательно, видимый цвет проходящего света будет изменяться с изменением угла зрения наблюдателя. Длина волны пропускаемого света и величина смещения полосы пропускания непосредственно зависят от толщины диэлектрического слоя и показателя преломления этого диэлектрического материала.

    Благодаря наличию большого количества диэлектрических соединений, из которых можно выбрать нужное, а также благодаря возможности контролировать размеры различных компонентов с высокой точностью можно изготовлять такие полосовые интерференционные фильтры, которые бы пропускали свет в широком диапазоне полос по всему спектру видимого света.

    В настоящее время данная область техники нуждается в новых видах фильтров, преимуществом которых было бы предоставление полезных фильтрующих эффектов за счет использования оптических свойств традиционных интерференционных фильтров.
    1   ...   9   10   11   12   13   14   15   16   17


    написать администратору сайта