Главная страница

БХ. Ответы к экзамену.. Предмет биохимии. Важн этапы развития. Обмен веществ и энергии. Гетеро и аутотрофы(различия по питанию,истм энергии). Катаболизм,анаболизм. Осне разделы и направления в биохимии


Скачать 0.88 Mb.
НазваниеПредмет биохимии. Важн этапы развития. Обмен веществ и энергии. Гетеро и аутотрофы(различия по питанию,истм энергии). Катаболизм,анаболизм. Осне разделы и направления в биохимии
АнкорБХ. Ответы к экзамену..doc
Дата29.09.2017
Размер0.88 Mb.
Формат файлаdoc
Имя файлаБХ. Ответы к экзамену..doc
ТипДокументы
#9068
КатегорияБиология. Ветеринария. Сельское хозяйство
страница2 из 10
1   2   3   4   5   6   7   8   9   10
. Желчные кислоты обладают поверхностно-активными свойствами и участвуют в переваривании жиров, эмульгируя их и делая доступными для действия панкреатической липазы. Желчные кислоты - производные холестерола с пятиуглеродной боковой цепью в положении 17, которая заканчивается карбоксильной группой. В организме человека синтезируются две желчные кислоты: холевая, которая содержит три гидроксильные группы в положениях 3, 7, 12, и хенодезокеихолевая, содержащая две гидроксильные группы в положениях 3 и 7. В печени эмульгирующие свойства жёлчных кислот увеличиваются за счёт реакции конъюгации, в которой к карбоксильной группе жёлчных кислот присоединяются таурин или глицин, полностью ионизированные при рН кишечного сока. Эти производные - конъюгированные желчные кислоты - находятся в ионизированной форме и поэтому называются солями желчных кислот. Именно они служат главными эмульгаторами жиров в кишечнике.
.Ферменты,история.Ферменты,как биологические катализаторы.Роль и значение ферм-в.Химическая природа.Простые и сложные ферменты.Апофермент и кофермент.

Ферменты- катализаторы, которые способны ускорять химические реакции. В ходе реакции они претерпевают физические изменения, но по ее завершении возвращаются в исходное состояние.Ферменты являются белковыми катализаторами биохимических реакций, большая часть которых в отсутствие ферментов протекала бы крайне медленно. В отличие от небелковых катализаторов (Н+, ОН-, ионы металлов) каждый фермент способен катализировать лишь очень небольшое число реакций, часто только одну. Таким образом, ферменты представляют собой реакционно-специфические катализаторы.Практически все биохимические реакции катализируются ферментами. Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц. Он давал хищным птицам глотать кусочки мяса, заключенные в просверленную металлическую трубочку, которая была прикреплена к тонкой цепочке. Через несколько часов трубочку вытягивали из желудка птицы и выяснилось, что мясо частично растворилось. Поскольку оно находилось в трубочке и не могло подвергаться механическому измельчению, естественно было предположить, что на него воздействовал желудочный сок. Это предположение подтвердил итальянский естествоиспытатель Л. Спалланцани. В металлическую трубочку, которую заглатывали хищные птицы, Л.Спалланцани помещал кусочек губки. После извлечения трубки из губки выжимали желудочный сок. Затем нагревали мясо в этом соке, и оно полностью в нем " растворялось".Значительно позже ( 1836г) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto - "варю") под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов.

Ферменты действуют в очень мягких условиях: при нормальном давлении (не более нескольких атмосфер), невысокой температуре (25-40оС) и при значениях рН=4-8. Ферменты обладают очень высокой интенсивностью катализа. Например, ионы железа способны катализировать разложение перекиси водорода на воду и молекулярный кислород. Ферменты обладают высокой специфичностью действия, катализируя превращения либо одного вещества, либо близких по химической структуре группы веществ. Вещество, на которое действует фермент, называется субстратом (S). В связи с этим различают ферменты, обладающие узкой (абсолютной) субстратной специфичностью, которые избирательно действуют на один субстрат. Фермент широкой (групповой) специфичностью, действует на ряд близких по структуре субстратов. Пример фермента с абсолютной специфичностью – аргиназа, катализирующая реакцию расщепления аргинина до мочевины и орнитина. Групповой специфичностью обладает панкреатическая липаза, ускоряющая гидролиз триглицеридов (жиров), вне зависимости от содержания высших жирных кислот. Высокая интенсивность катализа при участии ферментов связана с тем, что в их присутствии снижается энергия активации – то дополнительное количество энергии, которое должно быть сообщено субстрату (S) для достижения им переходного состояния, с которого начинается любая химическая реакция. Многие болезни (врожденные нарушения метаболизма) определяются генетически обусловленными нарушениями в синтезе ферментов. При повреждении клеток (вызванном, например, недостатком кровоснабжения или воспалением) некоторые ферменты попадают в плазму крови. Диагностическая энзимология является областью медицины, использующей ферменты для диагностики и контроля за результатами лечения. Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы (коферментах) или ионах металлов (кофакторах). Многие ферменты оказывают каталитическое действие на субстраты только в присутствии специфического термостабильного низкомолекулярного органического соединения - кофермента. В таких случаях холофермент(каталитически активный комплекс) состоит из апофермента (белковая часть) и связанного с ним кофермента.Кофермент может быть связан с апоферментом ковалентными или нековалентными связями. Термин «простетическая группа» относится к ковалентно связанному коферменту. Коферменты можно считать вторичными субстратами, т.т. они в ходе реакции они претерпевают изменения,противоположные изм-м субстрата. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть — кофермент. Простые ферменты состоят только из аминокислот – например, пепсин, трипсин,лизоцим. Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем).
.Изоферменты.Лактатдегидрогеназа.

ИЗОФЕРМЕНТЫ (изоэнзимы, изозимы)- это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах; -это ферменты, катализирующие идентичные реакции, но отличающиеся друг от друга строением и каталитических свойствами. К изоферментам относят только те формы ферментов, появление которых связано с генетически детерминированными различиями в первичной структуре пептидной цепи. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам. Примером фермента, имеющего изоферменты, является гексокиназа, имеющая четыре изотипа, обозначаемых римскими цифрами от I до IV. При этом один из изотипов гексокиназы, а именно гексокиназа IV, экспрессируется почти исключительно в печени и обладает особыми физиологическими свойствами, в частности её активность не угнетается продуктом её реакции глюкозо-6-фосфатом. Ещё одним примером фермента, имеющего изоферменты, является амилаза — панкреатическая амилаза отличается по аминокислотной последовательности и свойствам от амилазы слюнных желёз, кишечника и других органов. Это послужило основой для разработки и применения более надёжного метода диагностики острого панкреатита путём определения не общей амилазы плазмы крови, а именно панкреатической изоамилазы.

Лактатдегидрогеназа- фермент класса оксидоредуктаз; катализирует обратимое восстановление пировиноградной кислоты до L-молочной кислоты с потреблением в качестве кофермента восстановленного никотинамидадениндинуклеотида (НАД×Н+Н+). Известно 5 изоферментов Л., различающихся как по аминокислотному составу, так и по некоторым физическим, иммунологическим и каталитическим свойствам. Определение активности Л. в плазме крови имеет диагностическое значение. Это фермент, который участвует в процессе окисления глюкозы и образовании молочной кислоты. Лактат (соль молочной кислоты) образуется в клетках в процессе дыхания. Лактатдегидрогеназа содержится почти во всех органах и тканях человека, особенно много его в мышцах. При полноценном снабжении кислородом лактат в крови не накапливается, а разрушается до нейтральных продуктов и выводится. В условиях гипоксии (недостатка кислорода) накапливается, вызывает чувство мышечной усталости, нарушает процесс тканевого дыхания.Изофермент ЛДГ 1 присутствует в большой концентрации в мышце сердца, а также в эритроцитах и корковом веществе почек; изофермент 5 - в скелетной мускулатуре и в печени. ЛДГ 3 характерен для лёгочной ткани. В норме основным источником изоферментов ЛДГ в сыворотке являются разрушающиеся клетки крови. При повреждении тканей ЛДГ поступает из них в кровь. Определение изоферментов имеет важное диагностическое значение, т. к. повышение концентрации отдельных изоферментов характеризует повреждение конкретных органов.
.Ингибиторы ферментов.Типы ингибирования.Исп-е ингибиторов в качестве лекарств.

Ингибирование ферментативной активности- снижение каталитической активности фермента под действием ингибиторов. Ингибиторы ферментов принято делить на 2 класса: обратимые и необратимые.Обратимые ингибиторы связываются с ферментом слабыми нековалентными связями и при определенных условиях легко отделяются от фермента. Обратимые ингибиторы бывают конкурентными и неконкурентными.

Типы ингибирования:

-конкурентное ингибирование – это обратимое снижение скорости

ферментативной реакции, вызванное ингибитором, связывающимся с активным

центром фермента и препятствующим образованию фермент-субстратного

комплекса. Такой тип ингибирования наблюдают, когда ингибитор – структурный

аналог субстрата, в результате возникает конкуренция молекул субстрата и

ингибитора за место в активном центре фермента. В этом случае с ферментом

взаимодействует либо субстрат, либо ингибитор, образуя комплексы фермент-

субстрат или фермент-ингибитор(пример конкурентного ингибирования - ингибирование сукцинатдегидрогеназной реакции малоновой кислотой. Сукцинат связывается с активным центром фермента сукцинатдегидрогеназы. В ходе ферментативной реакции происходит отщепление двух атомов водорода от сукцината и присоединение их к коферменту ФАД. В результате образуется фумарат, который высвобождается из активного центра сукцинатдегидрогеназы. Малоновая кислота –структурный аналог сукцината и может также взаимодействовать с активным центром сукцинатдегидрогеназы. При этом химическая реакция не идет;

-неконкурентное ингибирование – ингибирование ферментативной реакции, при котором ингибитор взаимодействует с ферментом в участке, отличном от активного центра. Неконкурентный ингибитор связывается либо с ферментом, либо с фермент-субстратным комплексом, образуя неактивный комплекс. Присоединение неконкурентного ингибитора вызывает изменение конформации молекулы фермента таким образом, что нарушается взаимодействие субстрата с активным центром фермента, что приводит к снижению скорости ферментативной реакции;

-необратимое ингибирование наблюдается в случае образования ковалентных связей между молекулой ингибитора и фермента. Чаще всего модификации подвергается активный центр фермента. В результате фермент не может выполнять каталитическую функцию. К необратимым ингибиторам относят ионы тяжелых металлов (ртути, серебра, мышьяка), которые в малых концентрациях блокируют сульфгидрильные группы активного центра;

-аллостерическими называют ферменты, действие которых «по определению» связано с изменением формы (alios — иной, другой; stereos — форма).Активность таких ферментов регулируют вещества, действующие подобно неконкурентным ингибиторам. Эти вещества присоединяются к ферментам в особых участках, удаленных от активного центра, и меняют активность фермента, вызывая обратимое изменение в структуре активного центра. В результате меняется и способность субстрата связываться с ферментом (чем данное явление и отличается от неконкурентного ингибирования). Действующие таким образом вещества называются аллостерическими ингибиторами. Примером данного явления служит реакция, протекающая во время гликолиза, который составляет одну из стадий процесса клеточного дыхания. Клеточное дыхание служит источником АТФ. Если концентрация АТФ высока, то АТФ, действуя как аллостерический ингибитор, подавляет активность одного из ферментов гликолиза. Если же клеточный метаболизм усиливается, а следовательно, АТФ расходуется и его общая концентрация падает, то после того как ингибитор будет удален, данный метаболический путь снова вступает в действие.

Многие лекарственные препараты оказывают свое терапевтическое действие по механизму конкурентного ингибирования. Например, аммониевые основания ингибируют ацетилхолинэстеразу, катализирующую реакцию гидролиза ацетилхолина на холин и уксусную кислоту. При добавлении ингибитора активность ацетилхолинэстеразы уменьшается, концентрация ацетилхолина (субстрата) увеличивается, что сопровождается усилением проведения нервного импульса. Ингибиторы холинэстеразы используют при лечении мышечной дистрофии. Эффективные ацетилхолинэстеразные препараты – прозерин, эндрофоний.
.Изменение активности ферментов при заболеваниях.Наследственные энзимопатии.Определние активности фермента в плазме для диагностики.

Активность фермента меняется при различных условиях реакции и зависит от температуры, рН среды, от концентраций субстратов и кофакторов. Наследственные энзимопатии, связанные:а) с полным выпадением синтеза какого-либо фермента;

б) с конституциональной слабостью отдельных звеньев ферментных процессов. Особенно ярко значение нарушения «правила соответствия»(«кляч к замку») выявляется при наследственных энзимопатиях. В этих случаях в тканях организма в результате изменения генетической информации не продуцируется или продуцируется в недостаточных количествах какой-либо из жизненно важных ферментов. Наследственные болезни обмена аминокислот, напр., фенилкетонурия (дефект ферментов, превращающих фенилаланин в тирозин) и гистидинемия (недостаточность фермента, расщепляющего гистидин), характеризуются нарушениями функции центральной нервной системы, что проявляется изменением мышечного тонуса, судорогами, отставанием в психомоторном развитии, слабоумием и др.Для выявления наследственной патологии обмена веществ необходим тщательный генеалогический анализ (см. Медицинская генетика) и целенаправленное углубленное клинико-лабораторное обследование. Основное значение в диагностике наследственных Э. имеют биохим. методы исследования (определение активности ферментов, продуктов обмена веществ), особенно в тех случаях, когда болезнь клинически не проявляется.Ферменты плазмы крови можно разделить на 2 группы. Первая, относительно небольшая группа ферментов активно секретируется в плазму крови определёнными органами. Например, печень синтезирует неактивные предшественники ферментов свёртывающей системы крови. Ко второй относят большую группу ферментов, высвобождающихся из клеток во время их нормального функционирования. Обычно эти ферменты выполняют свою функцию внутри клетки и не имеют физиологического значения в плазме крови. У здорового человека активность этих ферментов в плазме низкая и достаточно постоянная, так как постоянно соотношение скоростей высвобождения их из клеток и скоростей разрушения.При многих заболеваниях происходит повреждение клеток, и их содержимое, в том числе и ферменты, высвобождаются в кровь. К причинам, вызывающим высвобождение внутриклеточного содержимого в кровь, относят нарушение проницаемости мембраны клеток (при воспалительных процессах) или нарушение целостности клеток (при некрозе). Определение в крови активности ряда ферментов хорошо налажено в биохимических лабораториях, что используют для диагностики заболеваний сердца, печени, скелетной мускулатуры и других тканей. Измеряемая в сыворотке крови активность ферментов — результат совместной и согласованной работы клеточных структур (процессов синтеза и распада ферментов), функции мембран, скорости инактивации. Кроме того, на активность ферментов в крови значительное влияние оказывает продолжительность жизнедеятельности. Для основного числа ферментов период полураспада составляет от 10 до 120 ч. При этом ферменты с коротким периодом полураспада лучше отражают процессы, протекающие в органе.
.Ферменты пищеварительной системы,гидролизующие углеводы,липиды,белки.

Выделяют три основных типа пищеварения. При внеклеточном дистантном пищеварении синтезированные секреторными клетками ферменты выделяются во внеклеточную среду, где и реализуется их гидролитическое действие. Пищеварительные ферменты вырабатываются органами пищеварения и расщепляют сложные вещества пищи на более простые, легко усвояемые организмом соединения. Белки расщепляются протеазами (трипсин, пепсин и др.), углеводы -- гликозидазами (амилаза), жиры -липазами. Внутриклеточное пищеварение- типпищеварения у простейших и у некоторых наиболее примитивных многоклеточных организмов (губки, плоские черви). Оно заключается в том, что гидролиз нерасщепленных или частично расщепленных пищевых веществ, проникших внутрь клетки, осуществляется ферментами цитоплазмы. Мембранное (пристеночное, контактное) пищеварение- характерной особенностью кишечной клетки является наличие щеточной каймы, образованной микроворсинками -- выростами плазматической мембраны клетки. Внешняя поверхность микроворсинок покрыта гликокаликсом-мелкоячеистой, состоящей из мукополисахаридных нитей. Между этими нитями располагаются адсорбированные из полости кишечника ферменты, которые расщепляют макромолекулярные соединения до олигомеров и димеров.В ротовой полости начинается первичная механическая и химическая обработка пищи: размельчение при жевании, смачивание слюной и формирование ее в пищевой комок, который затем в результате глотания поступает в пищевод и далее -- в желудок. Слюна, секретируемая слюнными железами, представляет собой слабощелочную жидкость, содержащую ферменты, неорганические соли, белок и муцин. Пищеварение в ротовой полости связано, главным образом, с расщеплением углеводов. Фермент амилаза гидролизует крахмал до мальтозы, которую затем мальтаза превращает в глюкозу. В незначительных количествах в слюне содержатся и протеолитические ферменты, расщепляющие белки. Основным ферментом, гидролизующим белки в желудке, является пепсин, который образуется из предшественника -- пепсиногена, секретируемого главными клетками фундальных желез. Превращение пепсиногена в пепсин происходит под влиянием соляной кислоты, секретируемой париетальными клетками фундальных желез. В желудочном соке находится также химозин, или сычужный фермент, створаживающий молоко в присутствии солей кальция. Фермент, гидролизующий жиры, -- липаза -- играет небольшую роль в желудочном пищеварении, т. к. он способен расщеплять только эмульгированный жир молока. Переваривание пищи в двенадцатиперстной кишке осуществляется главным образом за счет ферментов панкреатического сока при участии желчи. Протеолитические ферменты поджелудочной железы (трипсин, химотрипсин и эластаза) синтезируются в виде неактивных предшественников. Их активация происходит в нейтральной или слабощелочной среде под влиянием энтерокиназы -- эндопептидазы, секретируемой слизистой двенадцатиперстной кишки. Кроме протеаз, в панкреатическом соке присутствуют ферменты, расщепляющие жиры (панкреатическая липаза, фосфолипаза А и лецитиназа), углеводы (панкреатическая альфа-амилаза) и нуклеиновые кислоты (нуклеазы). Кишечный сок, выделяемый железами слизистой оболочки на всем протяжении тонкого кишечника, содержит многочисленные ферменты (аминопептидазу, дипептидазу, мальтазу, лактазу, фосфолипазу и др.), обеспечивающие конечные этапы переваривания белков, жиров и углеводов.
.Особенности ферментативного катализа.Специфичность действия ферментов.

ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ (биокатализ), ускорение биохим. р-ций при участии ферментов. Эффективность Ф. к. достигается в результате того, что химическая реакция разбивается на ряд энергетически более лёгких промежуточных реакций, в которых участвует фермент.

Этапы:1)присоединение субстрата (S) к ферменту (E) с образованием фермент-субстратного комплекса (E-S)(«ключ к замку»);

2) преобразование фермент-субстратного комплекса в один или несколько переходных комплексов (E-X) за одну или несколько стадий;

3) превращение переходного комплекса в комплекс фермент-продукт (E-P);

4) отделение конечных продуктов от фермента.

Механизмы катализа:

1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций. Примером кислотно-основного катализа является окисление спирта с помощью фермента алкогольдегидрогеназы.

2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции. Примером является действие сериновых протеаз (трипсин, хемотрипсин) на гидролиз пептидных связей при переваривании белков. Ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента. Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер).
.Кинетика ферментативных реакций.Факторы,определяющие скорость.

Ферментативная активность реакции зависит от:концентрации фермента и субстрата, температуры, рН, присутствия ингибиторов.

1)скорость любой ферментативной реакции непосредственно зависит от концентрации фермента;

2)температура.Коэффициент, указывающий, во сколько раз повышается скорость реакции при повышении температуры на каждые 10оС, называется температурным

коэффициентом. Для большинства биологических реакций при повышении

температуры на 10оС скорость увеличивается в 2-4 раза. При оптимальной температуре скорость реакции максимальна;

3)рН. Умеренные изменения рН оказывают влияние на ионное состояние

фермента и субстрата. Как показывают измерения ферментативной

активности при различных рН, оптимум активности для разных ферментов находится в широких пределах рН. Однако большая часть ферментов организма человека имеет оптимум рН, близкий к нейтральному, совпадающий с физиологическим значением рН;

4)ингибиторы снижают скорость реакции. Ингибиторы ферментов принято делить на 2 класса: обратимые и необратимые.Обратимые ингибиторы связываются с ферментом слабыми нековалентными связями и при определенных условиях легко отделяются от фермента. Обратимые ингибиторы бывают конкурентными и неконкурентными.
.Активный центр и мех-м действия ферментов,специфичность.

Активный центр имеет участок связывания, который обеспечивает субстратную специфичность, т.е. выбор субстрата(абсолютная, групповая,стереоспецифичность) и каталитический участок, который обеспечивает выбор пути химического превращения данного субстрата(специфичность пути превращения).Абсолютно специфичные ферменты ускоряют определенный тип реакции одного единственного субстрата. Так, аргиназа катализирует только реакцию гидролиза аргинина на орнитин и мочевину; сахараза - гидролиз сахарозы на глюкозу и фруктозу. Групповая специфичность. Она характеризует подавляющее большинство ферментов и состоит в том, что фермент, проявляя свойственную ему специфичность по отношению к реакции, способен действовать не на один, а на несколько, иногда на большое число субстратов со сходным химическим строением. Большинство ферментов катализирует однотипные реакции с небольшим количеством (группой) структурно похожих субстратов.Так, фермент панкреатическая липаза катализирует гидролиз жиров в двенадцатиперстной кишке человека, катализируя превращение любой молекулы жира (триацилглицерола) до молекулы моноацилглицерола и двух молекул высших жирных кислот. Большинство протеолитических ферментов, осуществляющих гидролиз белков, имеет групповую субстратную специфичность, гидролизуя пептидные связи, образованные разными аминокислотами. Стереохимическая специфичность проявляется только в случае оптически активных веществ, и фермент активен только по отношению к одной стереоизомерной форме соединения.При наличии у субстрата нескольких стерео-изомеров фермент проявляет абсолютную специфичность к одному из них.

Первоначальным событием при действии фермента является его специфическое связывание с лигандом — субстратом (S). Это происходит в области активного центра, который формируется из нескольких специфических R—групп аминокислот, определенным образом ориентированных в пространстве. Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется центром связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также центры связывания кофакторов или ионов металлов. В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция). Угольная кислота слабая, ее разложение пойдет, если ее молекулы имеют энергию, превышающую энергию активации. Энергия активации – это дополнительное количество кинетической энергии, необходимое молекулам вещества, чтобы они вступили в реакцию. При достижении этого энергетического барьера в молекуле происходят изменения, вызывающие перераспределение химических связей и образование новых соединений. Молекулы, обладающие энергией активации, находятся в переходном состоянии. Разницу энергий между исходным реагентом Н2СО3 и конечными Н2О и СО2 называют изменением свободной энергии реакции. Н2О и СО2 более стабильные вещества, чем Н2СО3 т.к. обладают меньшей энергией и при обычных условиях практически не реагируют. Энергия, выделяющиеся в результате этой реакции рассеивается в виде тепла в окружающую среду.Ферменты снижают энергию активации, в результате возрастает количество реакционных молекул и увеличивается скорость реакции. При участии ферментов образуется фермент-субстратный комплекс, который распадается на свободный фермент и продукт реакции.Ферменты не изменяют свободную энергию субстратов и продуктов и поэтому не меняют равновесие реакции .
.Кофакторы,роль в катализе.Витамины,как предшественники коферментов.Гиповитаминозы,их причины и проявления.

Большинство ферментов для проявления ферментативной активности

нуждается в низкомолекулярных органических соединениях небелковой

природы (коферментах) или ионах металлов (кофакторах). Многие ферменты оказывают каталитическое действие на субстраты только в присутствии специфического термостабильного низкомолекулярного органического соединения - кофермента. В таких случаях кофермент с апоферментом (белковая часть) формируют холофермент, обладающего каталитической активностью.

апофермент + кофактор (кофермент)= холофермент

Кофермент может быть связан с апоферментом ковалентными или

нековалентными связями. Термин «простетическая группа» относится к

ковалентно связанному коферменту. К числу реакций, требующих присутствия коферментов, относятся ОВР, реакции переноса функциональных групп и изомеризации, а также реакции конденсации.

Кофакторы: более 25% всех ферментов для проявления каталитической активности

нуждается в ионах металлов. Ионы металлов выполняют функцию стабилизаторов молекулы субстрата, активного центра фермента и конформации белковой молекулы фермента, а именно, третичной и четвертичной структур. Например, для большинства киназ в качестве одного из субстратов выступает не АТФ, а комплекс АТФ с магнием. Магний не взаимодействует с ферментом, а участвует в стабилизации молекулы АТФ и нейтрализации отрицательного заряда субстрата, что облегчает его присоединение к активному центру фермента. В некоторых случаях ионы металла служат «мостиком» между ферментом и субстратом. Они выполняют функцию стабилизаторов активного центра, облегчая присоединение к нему субстрата и протекание химической реакции. Это магний, марганец, цинк, кобальт, молибден. В отсутствие металла ферменты активностью не обладают. Ионы металлов обеспечивают сохранение вторичной, третичной и четвертичной структуры молекулы фермента. Такие ферменты в отсутствие ионов металлов способны к химическому катализу, однако они нестабильны. Их активность снижается и даже полностью исчезает при небольших изменениях рН и температуры. Таким образом, ионы металлов выполняют функцию стабилизаторов оптимальной конформации белковой молекулы. Не менее важную роль отводят ионам металлов в осуществлении ферментативного катализа. Эту функцию выполняют цинк, железо, марганец, медь. Например, карбоангидраза, катализирующая образование угольной кислоты, содержит ионы цинка, который участвует в образовании Н+ и ОН-. Эти ионы присоединяются к СО2 с образованием Н2СО3 : СО2 + Н2О <--> Н2СО3 /

Для проявления каталитической активности большинству ферментов

необходимо наличие кофермента. Гидролитические ферменты (протеазы,

липазы) выполняют свою функцию в отсутствие кофермента. Кофермент, локализуясь в каталитическом участке активного центра,принимает непосредственное участие в химической реакции. Он выступает в качестве акцептора и донора химических группировок, атомов, электронов. Кофермент связывается с белковой частью молекулы ковалентными, в этом случае он называется простетической группой (ФАД, ФМН, биотин) и нековалентными связями, в этом случае кофермент может рассматриваться,как второй субстрат (NAD+, NADP+).К коферментам относят следующие соединения:

-производные витаминов

-глутатион, участвующий в ОВР

-убихинон, участвующий в переносе электронов и Н+ в цитохромной системе

- нуклеотиды, доноры и акцепторы остатка фосфорной кислоты.

К числу коферментных препаратов витаминной природы относятся кокарбоксилаза (коферментная форма тиамина - витамин В1), пиридоксальфосфат. (витамин Вб), кобамамид (витамин В 12). Кокарбоксилаза-кофермент, образующийся в организме человека из поступающего извне тиамина.Кобамамид-обладает всеми свойствами витамина В 12 и анаболической активностью. Оксикобаламин вляется метаболитом цианкобаламина (витамин В12). По фармакологическому действию близок витамину В 12, но по сравнению с ним быстрее превращается в организме в активную коферментную форму и дольше сохраняется в крови, так как более прочно связывается с белками плазмы и медленнее выделяется с мочой. Пиридоксальфосфат является коферментной формой витамина Вб (пиридоксина). Карнитин- витаминоподобное вещество, частично поступающее с пищей, частично синтезируемое в организме человека. Способствует окислению жирных кислот, синтезу аминокислот и нуклеиновых кислот.

Гиповитаминозы- болезненные состояния, обусловленные недостаточностью витаминов в организме. Причиной гипополивитаминозов чаще всего являются заболевания пищеварительного тракта, при которых нарушена всасываемость витаминов. Картина гиповитаминоза зависит от того, какого именно витамина не хватает в организме. По происхождению выделяют экзогенные (первичные) и эндогенные (вторичные) гиповитаминозы. Непосредственная причина экзогенных (первичных) гиповитаминозов — недостаточное поступление в организм одного или, чаще, нескольких витаминов с пищей. Для экзогенных гиповитаминозов характерны сезонный характер и латентное течение. Эндогенные гиповитаминозы подразделяют на приобретённые, наследуемые и врождённые. Причины приобретённых гиповитаминозов: нарушения пищеварения и высвобождения витаминов из продуктов питания; повышенная потребность в витаминах;нарушение всасывания витаминов в желудке и кишечнике;расстройство доставки витаминов. Гиповитаминоз развивается незаметно: появляется раздражительность, повышенная утомляемость, снижается внимание, ухудшается аппетит, нарушается сон. Систематический длительный недостаток витаминов в пище снижает работоспособность, сказывается на состоянии отдельных органов и тканей (кожа, слизистые, мышцы, костная ткань) и важнейших функциях организма, таких как рост, интеллектуальные и физические возможности, продолжение рода, защитные силы организма. Гиповитаминоз А- проявляется нарушениями зрения (снижением его остроты, «куриной слепотой», т. е. утратой способности видеть в сумерках), поражением тонкого слоя эпителиальных клеток, выстилающих изнутри век» (конъюнктива), трахею, волосяные луковицы и почечные лоханки, и снижением со­противляемости пораженного эпителия гнойной инфекции, а у детей и подростков, кроме того, отставанием в физическом развитии. В1-дефицит-характеризуется повышенной раздражительностью, плохим сном, рассеянностью, забывчивостью, зябкостью, болями в животе, склонностью к рвоте, дискинезии желудка и кишечника, секреторным расстройствам. К числу ранних симптомов недостатка В1 относят изменения языка. Он становится суховатым, тёмно-красного цвета с маловыраженными сосочками. Недостаточность витамина В2 (рибофлавина) вызывает структурные и функциональные изменения в коре надпочечников, нарушает процессы гемопоэза, обмена железа, глюконеогенеза, превращения фенилаланина в катехоламины. Дефицит рибофлавина неблагоприятно отражается на состоянии естественного иммунитета. Его недостаток может привести к невынашиванию беременности. Заболевание проявляется поражениями губ (трещины, «заеды»), приобретающих сероватый оттенок, языка, который становится гладким, блестящим и пурпурно-красным. Слизистая оболочка полости рта покрывается сероватыми пятнами; возникают воспаление слизистой оболочки век (конъюнктивит), поражение роговой оболочки и внутренних структур глаза. Все это сопровождается светобоязнью и снижением остроты зрения. Цинга́— болезнь, вызываемая острым недостатком витамина C (аскорбиновая кислота), который приводит к нарушению синтеза коллагена, и соединительная ткань теряет свою прочность. В первую очередь цинга характеризуется ломкостью сосудов с появлением на теле характерной геморрагической сыпи, кровоточивости дёсен. Это обусловлено тем, что коллаген, в синтезе которого участвует витамин С, является важной составляющей сосудистой стенки.Ослабевает прикрепление надкостницы к костям и фиксации зубов в лунках, что приводит к их выпадению. Появление поднадкостничных кровоизлияний вызывает боли в конечностях. Источниками витамина D служат сливочное масло, яйца, молоко; особенно много его в рыбьем жире. Кроме того, в отличие от других витаминов, он может синтезироваться в организме человека. Синтез происходит в коже под влиянием солнечного света. Гиповитаминоз D наблюдается преимущественно у детей и известен под названием рахита. Недостаток этого витамина ведет к нарушению затвердевания костей и проявляется искривлением ног, своеобразной формой черепа (высокий выпуклый лоб, западающая переносица) и грудной клетки. Легкие формы рахита распространены очень широко. У взрослых дефицит витамина D ведет к вымыванию из костей кальция и их размягчению, следствием чего может быть, например, искривление и укорочение позвоночника, искривление костей ног. Гиповитаминоз Е вызывает бесплодие. Недостаточность витамина РР сопровождается четко очерченной клинической картиной, известной под названием пеллагры (шершавая кожа). Типичная клиническая картина заболевания включает триаду: дерматит, диарея, деменция.
.Современная классификация ферментов,номенклатура,тип катализируемых реакции,примеры.

Реакции и ферменты, которые их катализируют, подразделяются на шесть классов.

Классификация:

1)оксидоредуктазы- , ферменты, катализирующие ОВР с участием двух субстратов, S и S‘

Sвосст + S’ окисл= Sокисл +S’восст

Окисление протекает как процесс отнятия атомов Н+ от субстрата, а восстановление – присоединение Н+ к акцептору. В качестве кофермента оксидоредуктазы содержат NAD(H)+, NADP+, FMN, FAD. Самыми типичным оксидоредуктазами являются дегидрогеназы.Дегидрогеназы катализируют реакции, в которых участвуют группы СН-ОН, СН-СН, С=О, СН-NH2.

Некоторые подклассы: - ферменты, действующие на группу СН-ОН (донор электронов) Например:

Алкоголь: NAD+ оксидоредуктаза (алкогольдегидрогеназа)

спирт + NAD+ = альдегид (кетон) + NADН+ Н+

- самый распространенный вариант ОВР в клетке состоит в окислении атомов Н, снятых с субстрата, при посредстве цитохромной системы. Цитохромную систему образуют оксидоредуктазы, имеющие в качестве простетических групп железопоррфины. Соединяясь с белками, железопорфины дают начало семейству хромопротеинов или цитохромов. Цитохромы образуют цитохромную систему (b,c,a,a3), которая передает электроны на кислород, который соединяется с водородом, образуя молекулу воды. Из всех цитохромов только цитохром aa3 передает электроны на кислород, и поэтому он называется цитохромоксидазой;

О2 + 4Н+ +4е- =2Н2О

2) трансферазы- ферменты катализирующие перенос функциональных групп G (ацильных, гликозильных, метильных, аминогрупп, групп, содержащих серу и фосфор) с одного субстрата S на другой S’

S-G + S’ = S’-G + S

К классу трансфераз относят аминотрансферазы, ацилтрансферазы, метилтрансферазы, гликозилтрансферазы, киназы (протеинкиназы).

Ацетил-СоА: холин О-ацетилтрансфераза (холин-ацетилтрансфераза)

Ацетил-СоА + холин = СоА + О-ацетилхолин

3) гидролазы- ферменты, катализирующие гидролиз эфирных, пептидных, сложноэфирных, гликозильных связей

Ферменты, действующие на сложноэфирные связи. Например:

Ацилхолин - ацилгидролаза (псевдохолинэстераза):Ацилхолин + Н20 = холин + кислота

4) лиазы- ферменты, отщепляющие группы от субстратов по негидролитическому механизму, с образованием двойных связей.Это ферменты, действующие на связи С-С, С-О, С-N, С-S. При этом отщепляются СО2, Н2О, NH2, SH2.

Углерод—кислород лиазы. Например:L-малат-гидролиаза (фумараза):L-малат = Фумарат + Н20.

5) изомеразы- ферменты, катализирующие взаимопревращения оптических, геометрических и позиционных изомеров.

цис/транс-изомеразы. Например:

все-транс-Ретиналь, 11-цис-транс-изомераза (ретинальизомераза)
все-транс-Ретиналь=11-цис-Ретиналь

6) лигазы- ферменты, катализирующие соединение двух молекул, с образованием ковалентной связи и сопряженное с разрывом пирофосфатной связи АТФ. В результате образуются связи С-О, С-S, С-N и С-С.

Пример:

глутаминовая к-та + NН3 + АТФ (под действием аммиаклигазы или глутаминсинтетазы) = глутамин + АДФ + Н3РО4

Номенклатура: первоначально ферментам давали названия, образуемые путем добавления окончания - аза к названию субстрата, на который данный фермент действует. Ферменты, гидролизующие крахмал (амилон), были названы амилазами;

ферменты, гидролизующие жиры (липос), -липазами;ферменты, гидролизующие белки (протеины), -протеиназами. Позднее ферментам, катализирующим сходные по типу реакции, стали давать название, указывающее тип соответствующей реакции — дегидрогеназы, оксидазы, декарбоксилазы, ацилазы и т.д. Главный принцип заключается в том, что ферменты называют и классифицируют в соответствии с типом катализируемой химической реакции и ее механизмом; название фермента состоит из двух частей: первая часть - название субстрата (или субстратов); вторая указывает тип катализируемой реакции и оканчивается на -аза. Каждый фермент имеет кодовый номер по классификации ферментов (КФ): первая цифра характеризует класс реакции, вторая - подкласс и третья - подподкласс. Четвертая цифра указывает порядковый номер фермента в его подподклассе. Таким образом, КФ 2.7.1.1 означает, что фермент относится к классу 2 (трансфераза), подклассу 7 (перенос фосфата) и подподклассу 1 (акцептором фосфата является спирт). Последняя цифра обозначает фермент гексокиназу, или АТР: D-гексозо-6-фосфотрансферазу, т.е. фермент, катализирующий перенос фосфата с АТР на гидроксильную группу атома углерода в шестом положении глюкозы.

.Регуляция активности ферментов: фосфорелирование-дефосфорелирование,роль протеинкиназ и проинфосфатаз.Примеры метаболических путей,регулируемых такими способами.

Все химические реакции в клетке протекают при участии ферментов. Чтобы воздействовать на скорость протекания метаболического пути, достаточно регулировать количество или активность ферментов. В каждом метаболическом пути есть ключевые ферменты, которые регулируют скорость всего пути. Эти ферменты называются регуляторными. Метаболические пути – последовательность превращения одних соединений в другие. Метаболизм – совокупность всех метаболических путей, протекающих в организме.

Регуляция каталитической активности фермента

-Аллостерическая регуляция(ферменты регулируют скорость метаболических путей, которые представляют собой последовательность взаимосвязанных реакций, катализируемых разными ферментами. Например, катаболизм глюкозы до СО2 и Н2О регулируется аллостерически.)

-Регуляция с помощью белок-белковых взаимодействий

-Регуляция путем фосфорилирования/дефосфорилирования фермента

-Регуляция протеолизом .

Широко распространенный способ химической модификации ферментов фосфорилирование/дефосфорилирование белков осуществляют ферменты протеинкиназы (класс трансферазы). Они катализируют образование сложноэфирной связи между фосфатной группой и ОН-группой аминокислотных остатков серина, треонина и тирозина. Донором фосфатной группы является АТФ. В результате фосфорилирования происходит изменение заряда, конформации фермента, конформации активного центра фермента. повышается сродство фермента к субстрату и возрастает скорость ферментативной реакции. Например – триацилглицерол-липаза (ТАГ-липаза) – внутриклеточный фермент жировой ткани. В дефосфорилированной форме фермент неактивен. Под действием специфической протеинкиназы А фермент фосфорилируется и переходит в активную форму. Для некоторых ферментов, обеспечивающих метаболизм глюкозы, холестерола, гликогена, фосфорилированная форма является неактивной. Например, фермент пируваткиназа, участвующая в катаболизме глюкозы, переходит в активную форму только после отщепления фосфорного остатка. Поэтому в этом случае фосфорилирование вызывает снижение активности, а дефосфорилирование – повышение активности фермента. Дефосфорилирование осуществляют протеинфосфатазы (класс гидролазы).
.Регуляция активности фермента путем ассоциации-диссоциации протомеров.

Т.е. это регуляция с помощью белок-белковых взаимодействий. В тканях присутствуют ферменты, которые в неактивной форме представлены отдельными комплексами, состоящими из нескольких протомеров. При увеличении в клетке концентрации специфических регуляторных молекул они присоединяются к определенным центрам протомеров. Изменение их конформации, вызванное присоединением лигандов, повышает их сродство друг к другу и стимулирует ассоциацию, т.е. образование активной формы фермента. Веществом, которое изменяет конформацию комплексов, является цитрат. При повышении его концентрации в цитозоле клетки 3 тетрамера объединяются в олигомер из 12 протомеров – активную форму ацетил-СоА карбоксилазы.

Другим примером этого типа регуляции может служить активация протеинкиназы А. В неактивной форме фермент состоит из 4 протомеров – 2 каталитических и 2 регуляторных. Регуляторные протомеры имеют по 2 центра связывания для молекул регуляторного лиганда – циклического АМФ. Молекулы цАМФ при повышении их концентрации в клетке присоединяются к специфическим центрам регуляторных протомеров. Это приводит к изменению их конформации и потере сродства к каталитическим протомерам. Отделившиеся каталитические протомеры (протеинкиназы А) проявляют протеинкиназную активность и фосфорилируют белки по аминокислотным остаткам серина и треонина. В отсутствие цАМФ регуляторные протомеры взаимодействуют с каталитическими протомерами, образуя неактивный комплекс. Синтез молекул цАМФ из АТФ катализирует фермент аденилатциклаза, а превращение цАМФ в АМФ – фосфодиэстераза.
.Применение ферментов в медицине.Энзимодиагностика и энземотерапия.

Важная особенность ферментов, используемых в диагностике, состоит в том, что активность каждого из них можно определить в природном материале без предварительного фракционирования: в крови, в моче, в спинно-мозговой жидкости, в слюне.К ферментам, используемым в энзимологии предъявляют следующие требования

Органоспецифичность (тканеспецифичность)

Выход фермента в кровь при повреждении органа или ткани

Низкая активность фермента в крови в норме

При этом различают:

Неспецифические ферменты, которые присутствуют во всех тканях в разных количествах

Тканеспецифические ферменты, которые присутствуют только в данной конкретной ткани

Весьма существенным в энзимодиагностике является знание особенностей внутриклеточной локализации ферментов. Внутри клетки они, как правило, локализованы в определенном ее отделе (компартменте). Различают цитоплазматические, митохондриальные, ядерные, лизосомные ферменты. Например, при воспалительных процессах повышается проницаемость клеточных мембран и в крови обнаруживаются цитоплазматические ферменты. Энзимотерапия – использование ферментов в качестве лечебных средств. Для лечения очень широко используются протеазы. Трипсин и химотрипсин практически не атакуют живые клетки, а легко расщепляют белки мертвых клеток. На этом основано их применение для очистки гнойных ран, лечения ожогов, отморожений. Ферменты крови плазмин, урокиназу применяют для предотвращения тромбообразования, т.к. они быстро разрушают тромб.Энзимотерапию пепсином, трипсином, химотрипсином, амилазой проводят при отсутствии этих ферментов в организме. Ферменты используют и в онкологии, для замедления развития лейкозов. В лейкозных клетках на фоне дефицита аспарагина замедляется синтез белков, приводящий к нарушению метаболизма этих клеток.
.Совр. представления о строении ДНК,комплементарность оснований.Правила Чаргаффа.Видовая специфичность,коэф-т специфичности ДНК.Участие белков в компактизации ДНК.Биологическая роль ДНК.

ДНК и РНК представляют собой линейные полимеры, построенные из нуклеотидов. Каждый нуклеотид в свою очередь состоит из трех компонентов: азотистого основания, являющегося производным пурина или пиримидина, пентозы (рибозы или дезоксирибозы) и остатка фосфорной кислоты. В состав нуклеиновый кислот входят два производных пурина – аденин и гуанин и три производных пиримидина – цитозин, урацил (в РНК) и тимин (в ДНК). Первичная структура нуклеиновых кислот – это порядок чередования нуклеотидов, связанных друг с другом в линейной последовательности 3’,5’-фосфодиэфирной связью. В результате образуются полимеры с фосфатным остатком на 5’-конце и свободной – ОН-группой пентозы на 3’- конце. Вторичная структура ДНК-в 1953 году Уотсоном и Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, вторичная структура ДНК представлена двойной правозакрученной спиралью, в которой две полинуклеотидные цепи расположены антипараллельно (одна в направлении 3’к 5’, вторая в направлении 5’ к 3’) и удерживаются относительно друг друга за счет взаимодействия между комплементарными азотистыми основаниями. Третичная структура ДНК формируется при ее взаимодействии с белками. Каждая молекула ДНК упакована в отдельную хромосому, в составе которой разнообразные белки связываются с отдельными участками ДНК и обеспечивают суперспирализацию и компактизацию молекулы. В период покоя комплексы ДНК с белками равномерно распределены по объему ядра, образуя хроматин. Белки хроматина делят на две группы: гистоны и негистоновые белки.

Гистоны - это небольшие белки с высоким содержанием положительно заряженных аминокислот лизина и аргинина. Они взаимодействуют с отрицательно заряженными фосфатными группами ДНК длиной 146 нуклеотидных пар, образуя нуклеосомы. Негистоновые белки представлены разными ферментами и белками, участвующими в синтезе ДНК и РНК, в регуляции этих процессов, а также структурными белками, обеспечивающими компактизацию ДНК.

Правило Чаргаффа- в молекуле ДНК количество адениловых нуклеотидов равно количеству тимидиловых нуклеотидов (А=Т), а количество гуаниловых – количеству цитидиловых (С=G). Соотношение А+Т/ G+С –величина постоянная и является видоспецифической характеристикой организма.

ДНК выполняет следующие функции:

-хранение наследственной информации происходит с помощью гистонов. Молекула ДНК сворачивается, образуя вначале нуклеосому, а после гетерохроматин, из которого состоят хромосомы;

-передача наследственного материала происходит путем репликации ДНК;

-реализация наследственной информации в процессе синтеза белка.

.Биосинтез ДНК(репликация).Биологический генетический код.

Синтез ДНК протекает в ядре в S-фазу клеточного цикла и предшествует делению клеток. Первоначально клетка из состояния покоя Go вступает в G1-фазу, в ходе которой синтезируются ферменты и белки, необходимые для синтеза ДНК. Затем в S-фазу протекает репликация и диплоидная клетка превращается в тетраплоидную, а в ходе митоза делится, образуя 2 дочерние диплоидные клетки. В эукариотических клетках репликация начинается одновременно во многих участках ДНК, которые имеют специфическую нуклеотидную последовательность и называются ориджинами репликации. От каждого ориджина синтез новых цепей ДНК идет в двух противоположных направлениях, образуя две репликативные вилки. Процесс является полуконсервативным, так как по завершении репликации каждая дочерняя молекула ДНК содержит одну родительскую нить и одну вновь синтезированную. Матрицей служат обе нити ДНК. Репликация включает стадии инициации, элонгации и терминации. В ходе инициации образуются две репликативные вилки при участии ферментов ДНК-топоизомеразы, ДНК-хеликазы и белков, связывающихся с одноцепочечными участками ДНК (SSВ-белки). ДНК-топоизомераза 1 присоединяется к участку ориджина, расщепляет одну из цепей ДНК и связывается с фосфатным остатком в точке разрыва, происходит локальное раскручивание двухцепочечной нити ДНК. Две молекулы ДНК-хеликазы, используя энергию АТФ, разрывают водородные связи между комплементарными основаниями и разделяют цепи ДНК. Одновременно ДНК-топоизомераза восстанавливает фосфодиэфирную связь и освобождается из связи с ДНК. SSВ-белки присоединяются к одноцепочечным участкам и препятствуют их повторному скручиванию в двойную спираль. На стадии элонгации образуются дочерние цепи ДНК на материнской ДНК. Этот процесс катализирует ДНК-полимераза.Сначала ДНК-полимераза синтезирует РНК –праймер, которым начинается лидирующая цепь и каждый фрагмент Оказаки в отстающей нити ДНК. Лидирующая нить растет непрерывно, а отстающая – в виде фрагментов Оказаки, каждый их которых включает включает РНК-праймер (10 нуклеотидов) и участок ДНК, примерно равный длине ДНК в составе нуклеосомы (примерно 150 нуклеотидов). Когда следующий фрагмент Оказаки достигает праймера предыдущего фрагмента, ДНК-полимераза отделяется от синтезированной цепи, а праймер предыдущего фрагмента удаляют эндонуклеаза и РНКаза, образуется брешь. ДНК-полимераза удлиняет последний фрагмент Оказаки, заполняя брешь. ДНК-лигаза сшивает предыдущий и вновь синтезированный фрагменты между собой. Новые цепи синтезируются неодинаково. Одна цепь на матрице ДНК с направлением от 3’- к 5’- концу растет непрерывно по ходу движения репликативной вилки и называется лидирующей.Вторая на матрице с направлением от 5’- к 3’- концу синтезируется против движения репликативной вилки в виде коротких фрагментов – фрагментов Оказаки, ее называют запаздывающей или отстающей. ДНК-лигаза объединяет фрагменты в полинуклеотидную цепь, затрачивая молекулу АТФ на образование каждой 3’, 5’- фосфодиэфирной связи. Кофактором всех стадий репликации являются ионы Mg2+. В результате образуются дочерние цепи, комплементарные и антипараллельные нитям материнской ДНК. После деления каждая дочерняя клетка получает диплоидный набор хромосом, идентичный материнской клетке.Завершение синтеза ДНК в процессе репликации происходит на стадии терминации. Существует система репарации- система восстановления поврежденной молекулы ДНК,которая включает: специфическая эндонуклеаза(обнаруживает нарушение комплементарности и гидролизует 3’,5’-фосфодиэфирную связь в поврежденной нити ДНК); экзонуклеаза(удаляет от 20 до 30 нуклеотидных остатков в области разрыва к 3’- концу образовавшейся бреши и заполняет брешь); ДНК – лигаза(используя АТФ как источник энергии, соединяет 3’,5’-фосфодиэфирной связью место разрыва между вновь синтезированной и основной нитями ДНК).

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства генетического кода:

-триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

-непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

-неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

-однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]

-вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

-универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
.Биосинтез РНК(транскрипция).РНК-полимеразы.Типы РНК,их роль.

Транскрипция – это синтез РНК на матрице ДНК. Процесс катализируют РНК-полимеразы, которые подобно ДНК-полимеразам, образуют фосфодиэфирные связи между рибонуклеотидами в соответствии с принципами комплементарности к одной из нитей ДНК, которую обозначают как матричную. У эукариот синтез РНК происходит в ядре и митохондриях практически постоянно вне зависимости от фаз клеточного цикла. В ядре РНК синтезируют 3 фермента: РНК-полимераза I катализирует образование рРНК, РНК-полимераза II –синтез мРНК, РНК-полимераза III – образование тРНК. Нуклеотидтрифосфаты (АТФ, ГТФ, ЦТФ, УТФ) выполняют функции субстратов синтеза и источников энергии. В ходе транскрипции матрицей является нить ДНК, имеющая направление от 3’ к 5’-концу, так как все РНК-полимеразы осуществляют рост новых цепей РНК в направлении от 5’ к 3’-концу антипараллельно матрице. Процесс транскрипции включает стадии инициации, элонгации и терминации. РНК-полимеразы узнают место начала транскрипции - промотер, имеющий специфическую последовательность нуклеотидов –ТАТА-. На стадии инициации к –ТАТА-последовательности матричной цепи ДНК присоединяется белок –ТАТА-фактор, который стимулирует присоединение к ДНК РНК- полимеразы и белковых факторов инициации транскрипции. Образующийся комплекс вызывает расплетение двойной нити ДНК длиной в один виток спирали (около 10 нуклеотидных пар).На этапе элонгации происходит удаление факторов инициации и присоединение фактора элонгации. Синтез РНК осуществляется на матричной нити ДНК по принципу комплементарновти. При этом в активном центре РНК-полимеразы каждый последующий нуклеотид связывается с 3’-концом предыдущего нуклеотида. По мере движения РНК-полимеразы по нити ДНК к освободившемуся промотору присоединяются новые молекулы фермента, поэтому один ген может одновременно транскрибироваться несколькими молекулами РНК-полимеразы.Стадия терминации начинается, когда РНК-полимераза достигает специфической последовательности нуклеотидов – сайта терминации. При этом фактор элонгации отделяется от РНК-полимеразы, а фактор терминации присоединяется. Он облегчает отделение синтезированной молекулы пре-РНК и фермента от матрицы ДНК. Молекулы РНК, которые синтезируются РНК-полимеразами, функционально неактивны и являются молекулами-предшественниками - пре-РНК. Они превращаются в зрелые молекулы только после соответствующих посттранскрипционных модификаций – созревания молекул РНК. Установлено, что эукариотические ДНК состоят из участков, кодирующих последовательность аминокислот в отдельных доменах молекулы белка – экзонов и участков, не содержащих информацию о строении белка – интронов. В ходе транскрипции получаются пре-РНК, содержащие участки, комплеменарные экзонам и интронам. В процессе созревания мРНК интроны удаляются, а экзоны соединяются между собой с высокой точностью при помощи комплексов из малых ядерных рибонуклеопротеинов (мяРНП) – сплайсосом. Этот процесс получил название сплайсинга.В клетках синтезируется около 20 семейств тРНК.Представители каждого семейства способны связываться только с одной из 20 аминокислот, входящих в состав белков.

Виды РНК:

- матричная (информационная) РНК(служит посредником при передаче информации, закодированной в ДНК к рибосомам);

- рибосо́мные РНК(рРНК) –( несколько молекул РНК, составляющих основу рибосомы. Основной функцией рРНК является осуществление процесса трансляции — считывания информации с мРНК при помощи адапторных молекул тРНК и катализ образования пептидных связей между присоединёнными к тРНК аминокислотами);

- транспортная РНК, тРНК(функцией является транспортировка аминокислот к месту синтеза белка);
.Современные представления о синтезе белка.Регуляция биосинтеза белка.

Трансляция (биосинтез белка) – это процесс, в ходе которого информация о структуре белка, записанная в виде линейной последовательности нуклеотидов в молекуле зрелой мРНК, «переводится на язык аминокислот» при участии тРНК и рибосом. В результате образуется молекула белка со строго определенной первичной структурой. В состав мРНК входят 4 нуклеотида, а в состав белков – 20 аминокислот. Из этого следует, что должен существовать способ кодирования аминокислот последовательностью нескольких нуклеотидов. Способ кодирования, согласно которому в мРНК зашифрована последовательность аминокислот в белке, получил название генетического (биологического или аминокислотного) кода.

Свойства генетического кода:

-триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

-непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

-неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

-однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]

-вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

-универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).

Декодирование информации о структуре белка, записанной в виде последовательности кодонов мРНК, возможно благодаря тРНК, выполняющим функции адапторов («приспособителей» аминокислот к кодонам мРНК). В центре полинуклеотидной цепи этих молекул имеется антикодоновая петля, в которой находится триплет нуклеотидов – антикодон, способный связываться с кодоном мРНК по принципу комплементарности и антипараллельности. На 3’конце молекулы все тРНК имеют акцепторный триплет – ССА, к которому аминокислоты присоединяются α-карбоксильной группой. Каждой аминокислоте соответствует своя тРНК. В цитозоле связывание аминокислот с тРНК катализируют ферменты аминоацил-тРНК-синтетазы (аа-тРНК-синтетазы). Образование полипептидных цепей белка требует участия большого числа компонентов, основными из которых являются:

-аминокислоты – субстраты синтеза белка

-мРНК – матрица, содержащая информацию о первичной структуре белка в виде линейной последовательности кодонов

-тРНК – адапторы аминокислот к кодоном мРНК

-аа-тРНК-синтетазы, катализирующие связывание аминокислот с соответствующими тРНК

-рибосомы – субклеточные структуры, на которых происходит сборка аминокислот в полипептидные цепи

-АТФ и ГТФ – источники энергии

-Mg2+ - кофактор, стабилизирующий структуру рибосом

-факторы инициации, элонгации, терминации – внерибосомные белки, облегчающие и ускоряющие процесс трансляции

После образования аа-тРНК дальнейшие события по сборке аминокислот в полипептидные цепи белка происходят на рибосомах и включают инициацию, элонгацию и терминацию. Инициация начинается с присоединения к зрелой мРНК в области кэпа малой субъединицы рибосомы 40S, инициирующей аа-тРНК (у эукариотов это всегда), факторов инициации и молекулы ГТФ. Формируется полная 80S рибосома с двумя активными центрами; Р-центром (пептидильным), с которым оказывается связанной Мет-тРНКмет, и А-центром (аминоацильным), в область которого попадает первый смысловой кодон мРНК. На рибосоме формируются А и Р-центры

Элонгация включает 3 последовательные стадии

1)связывание аа-тРНК в А-центре. В свободный А-центр присоединяется аа-тРНК, у которой антикодон комплементарен кодону мРНК, находящемуся в области этого центра. Для того чтобы это событие стало возможным, требуются затрата энергии ГТФ и участие фактора элонгации EF1.

2)образование пептидной связи. Между α-NH2-группой аминокислоты, находящейся в А-центре в составе аа-тРНК, и карбоксильной группой метионина или другой аминокислоты, входящей в растущую полипептидную цепь и присоединенной к тРНК Р-центра, возникает пептидная связь. Катализирует эту реакцию пептидилтрансфераза. Продуктом реакции становится удлиненная на одну аминокислоту пептидил-тРНК в А-центре рибосомы.

3)перемещение рибосомы по мРНК (транслокация). Рибосома перемещается по мРНК на один кодон в направлении от 5’-и 3’концу с использованием энергии ГТФ и при участии фактора элонгации EF2. В результате передвижения рибосомы пептидил-тРНК (Мет-тРНКмет) из А-центра попадает в Р-центр, а в А-центре оказывается следующий кодон мРНК. тРНК, которая передала Мет (или растущий пептид) на аминокислоту аа-тРНК (Вал-тРНКвал) на этом этапе теряет связь с Р-центром и уходит в цитозоль клетки.

Терминация. Этот этап наступает, когда в А-центр рибосомы попадает один из стоп-кодонов мРНК - UAA, UAG, UGA. По мере продвижения рибосомы по мРНК к 3’концу молекулы 5’конец высвобождается и к нему могут присоединяться новые рибосомы. При попадании в А-центр стоп-кодона вновь синтезированный пептид высвобождается из связи с тРНК и рибосомой с участием факторов терминации и энергии ГТФ.

Регуляция синтеза белка: в эукариотических клетках набор и количество белков могут регулироваться на разных уровнях реализации генетической информации в фенотипическую. На ДНК имеются короткие специфические последовательности, которые обеспечивают регуляцию экспрессии генов, именно к ним и присоединяются регуляторные белки. Индукторами или корепрессорами, стимулирующими присоединение регуляторных белков к ДНК, могут быть гормоны, ионы металлов, субстраты или продукты метаболических путей. У белков-регуляторов имеется 3 важнейших участка:

-участок, по которому белки взаимодействуют с энхансерами или сайленсерами

-участок, к которому присоединяются индукторы или корепрессоры

-участок, взаимодействующий с белками-посредниками или транскрипционными факторами и изменяющий сродство промотора к РНК-полимеразе.

Пример: стероидные гормоны кортизол, альдостерон легко проходят плазматическую мембрану и в цитозоле клеток-мишеней присоединяются к белку-рецептору. Образуется комплекс, который проходит ядерную мембрану и связывается с регуляторным участком определенного гена. При присоединении к к энхансеру, изменение конформаци ДНК вызывает индукцию транскрипции.

.Витмамины.Гипо- и гипервитаминозы.Мех-м действия витаминов.Классификация витаминов.Представители и значение.

Витамины - низкомолекулярные органические соединения различной химической природы и различного строения, синтезируемые главным образом растениями, частично - микроорганизмами. Для человека витамины - незаменимые пищевые факторы. Недостаток поступления витаминов с пищей, нарушение их всасывания или нарушение их использования организмом приводит к развитию патологических состояний, называемых гиповитаминозами. Гипервитаминоз — острое расстройство в результате интоксикации сверхвысокой дозой одного или нескольких витаминов (содержащихся в пище или витаминсодержащих лекарствах).Чаще всего гипервитаминозы вызываются приёмом резко повышенных доз витаминов А и D. Специфические функции многих витаминов определяются их связью с различными ферментами . Большинство водорастворимых витаминов ( группа В ) участвует в образовании коферментов и простетических групп ферментов, которые взаимодействуют с белковым компонентом (апоферментом ), приобретают каталитическую активность и непосредственно включаются в разнообразные химические реакции .Таким образом, витамины принимают опосредованное участие во многих обменных процессах : энергетическом ( тиамин, рибофлавин, ниацин ), биосинтезе и превращениях аминокислот и белков ( витамины В6 и В12 ), различных превращениях жирных кислот и стероидных гормонов ( пантотеновая кислота ), нуклеиновых кислот ( фолат ) и других физиологически активных соединений . Некоторые жирорастворимые витамины также выполняют коферментные функции . Витамин А в форме ретиналя является простетической группой зрительного белка родопсина, участвующего в процессе фоторецепции. По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы:

1) водорастворимые:Витамин В1 (тиамин); Витамин В2 (рибофлавин);Витамин РР (никотиновая кислота, никотинамид, витамин В3);Пантотеновая кислота (витамин В5); Витамин В6 (пиридоксин); Биотин (витамин Н); Фолиевая кислота (витамин Вс, В9); Витамин В12 (кобаламин); Витамин С (аскорбиновая кислота);Витамин Р (биофлавоноиды).

2)жирорастворимые:Витамин А(ретинол);Витамин D (холекальциферол);Витамин Е (токоферол);Витамин К (филлохинон).

Водорастворимые витамины: Витамин B1 (тиамин)( в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и ос-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбоксилировании пирувата и ос-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов. Основной, наиболее характерный и специфический признак недостаточности витамина В1 - полиневрит, в основе которого лежат дегенеративные изменения нервов).
1   2   3   4   5   6   7   8   9   10


написать администратору сайта