БХ. Ответы к экзамену.. Предмет биохимии. Важн этапы развития. Обмен веществ и энергии. Гетеро и аутотрофы(различия по питанию,истм энергии). Катаболизм,анаболизм. Осне разделы и направления в биохимии
Скачать 0.88 Mb.
|
.Предмет биохимии. Важн. этапы развития. Обмен веществ и энергии. Гетеро- и аутотрофы(различия по питанию,ист-м энергии). Катаболизм,анаболизм. Осн-е разделы и направления в биохимии. Значение биохимии для биологии и мед-ны. Проблемы биохимии. Биохимия - это наука, занимающаяся изучением различных молекул, химических реакций и процессов, протекающих в живых клетках и организмах. Структурной единицей живых систем является клетка, поэтому можно дать и другое определение: биохимия как наука изучает химические компоненты живых клеток, а также реакции и процессы, в которых они участвуют. Согласно этому определению, биохимия охватывает широкие области клеточной биологии и всю молекулярную биологию.Главная задача биохимии состоит в том, чтобы достичь полного понимания на молекулярном уровне природы всех химических процессов, связанных с жизнедеятельностью клеток. Основательное знание биохимии совершенно необходимо для успешного развития двух главных направлений биомедицинских наук: 1) решение проблем сохранения здоровья человека; 2) выяснение причин различных болезней и изыскание путей их эффективного лечения. Со строго биохимической точки зрения организм можно считать здоровым, если многие тысячи реакций, протекающих внутри клеток и во внеклеточной среде, идут в таких условиях и с такими скоростями, которые обеспечивают максимальную жизнеспособность организма и поддерживают физиологически нормальное состояние.Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ состоит из 3 этапов: поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.Поступление веществ в организм происходит в результате дыхания (кислород) и питания. Источником энергии для человека служит распад органических веществ пищи. С питательными веществами поступают преимущественно белки, полисахариды, жиры, которые в процессе пищеварения расщепляются на более мелкие молекулы (глюкоза, аминокислоты, жирные кислоты, глицерол). В клетках эти вещества подвергаются превращениям, включаясь в метаболизм (обмен веществ). Они могут использоваться для синтеза более сложных молекул (анаболизм) либо распадаются до конечных продуктов в процессах катаболизма. Катаболизм - процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО2, Н2О и мочевина. Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме.Биохимия включает в себя клеточную и молекулярную биологию..,биохимию растений,человека,микроорганизмов. .Хар-ка белковых веществ.Состав белка.Значение для организма. Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот.Св-ва и структура белков: молекулы белков отличаются неисчерпаемым разнообразием структуры при строгой ее специфичности у данного белка; белкам присуща способность к внутримолекулярным взаимодействиям, что обеспечивает динамичность структуры их молекул, изменчивость и пластичность их формы, обратимость переходов из глобулярного состояния в фибриллярное; обладая разнообразными химическими радикалами аминокислотных остатков в составе полипептидных цепей, белковые молекулы способны вступать в разнообразные химические и физические взаимодействия как с друг другом, так и с нуклеиновыми кислотами, полисахаридами, образуя надмолекулярные комплексы; молекулы белков закономерно изменяют свою структуру под влиянием внешнего воздействия и восстанавливают исходное состояние при его снятии многие белки способны каталитически ускорять химические реакции, протекающие в живом организме; белкам присущи регуляторные, защитные, токсические, транспортные, сократительные, структурные, рецепторные и многие другие функцииБелки обладают особой чувствительностью к химическим реагентам (кислоты, щелочи) и легко разрушаются. Белки очень легко теряют свои природные, нативные свойства и переходят в денатурированное состояние. Аминокислоты, находящиеся в белках, связаны друг с другом пептидными связями. Линейная последовательность аминокислот в белке уникальна для каждого индивидуального белка; информация о ней содержится в участке молекулы ДНК, называемой геном. Белки-ферменты(каталитическая функция); сократительные(мышечные) белки(актин,миозин); ядерные белки(гистоновые и негистоновые-регулируют работу генов); белки-гормоны(инсулин-снижает ур-нь глюкозы); защитная ф-я белков(интерферон,фибрин,фибриноген-свертывание крови); структурные белки(коллаген-в соединительных тканях; кератин-в волосах,ногтях;эластин-в кровеносных сосудах); транспортная ф-я(гемоглобин).Белки входят во все основные структурные компоненты клеток, тканей и органов, выполняют ферментативные функции, участвуют в переносе веществ через мембраны. .Аминокислоты-структурные эл-ты белка.Классификация, физико-химические св-ва.Общность строения,оптическая изомерия,амфотерность,сродство радикалов к воде. Белки входят во все основные структурные компоненты клеток, тканей и органов, выполняют ферментативные функции, участвуют в переносе веществ через мембраны. Молекула белка состоит из последовательности аминокислот. Ф-и аминокислот : структурную – большая часть аминокислот используется для построения белков; Анаболическую – аминокислоты являются предшественниками многих биологически активных соединений, таких как гормоны, пуриновые и пиримидиновые нуклеотиды, гем, креатин, холин, нейромедиаторы;энергетическую – аминокислоты могут служить источниками энергии, при длительном голодании или избыточном употреблении белков. Аминокислоты не депонируются в организме. Классификация аминокислот : -незаменимые(фенилаланин,метионин,треонин,триптофан,валин,лизин,лейцин, изолейцин; те аминокислоты, синтез которых сложен и неэкономичен для организма, очевидно, выгоднее получать с пищей. Такие аминокислоты называют незаменимыми) -частично заменимые(аргинин,гистидин-обр-ся в самом организме ; помимо синтезированных,нужно дополнительное поступление ) - условно заменимые(тирозин,цистеин-для синтеза нужны незаменимые аминокислоты; для тирозина-фенилаланин,для цистеина-метионин) -заменимые(глицин,глутамин,аспарагин,серин,пролин,аланин ; легко синтезируются в клетках ) Общая структурная особенность аминокислот- наличие амино- и карбоксильных групп; при нейтральных рН они находятся в виде биполярных ионов. По хим-му строению их можно разделить на: алифатические; ароматические; гетероциклические; Отрицательно заряженные аминокислоты. Сюда относятся аспарагиновая и глутаминовая кислоты. Имеют дополнительную СООН-группу в радикале - в нейтральной среде приобретают отрицательный заряд. Положительно заряженные аминокислоты: аргинин, лизин и гистидин. Имеют дополнительную NH2-группу (или имидазольное кольцо, как гистидин) в радикале - в нейтральной среде приобретают положительный заряд.Опти́ческая изомери́я (энантиомерия) — разновидность пространственной изомерии,которач проявляется способностью некоторых веществ поворачивать плоскость поляризованного луча в противоположные стороны, т.е. способны вращать плоскость поляризации света. Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержат два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму(левовращающие), и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах.Амфоте́рность- способность некоторых соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства, это, так называемые, биполярные ионы. Амфотерность объясняет способность аминокислот и белков перемещаться в электрическом поле. Заряд аминокислоты может изменяться под влиянием среды. Если общий заряд аминокислоты равен 0, то это ее состояние называют изоэлектрическим. Величина рН, при которой заряд аминокислоты равен 0, называется изоэлектрической точкой (ИЭТ).Атом кислорода сильнее притягивает электроны, чем атомы водорода, поэтому электронное облако смещено в сторону кислорода. Степень полярности определяется величиной частичных зарядов и расстоянием между центрами тяжести этих зарядов. Таким образом, молекула воды является диполем. Общий фрагмент обладает полярными свойствами, потому что содержит карбоксильную группу -COOH (при физиологическом значении pH эта группа заряжена отрицательно), и аминогруппы -NH2 (при физиологическом значении pH заряжена положительно). .Структурная организация белков. Типы связей. Линейная последовательность аминокислотных остатков в полипептидной цепи называется первичной структурой белка. Первичная структура каждого индивидуального белка закодирована в молекуле ДНК (участке, называемом геном) и реализуется в ходе транскрипции (переписывания информации на мРНК) и трансляции (синтез пептидной цепи). Вторичная структура белков - это пространственная структура, образующаяся в результате взаимодействий между функциональными группами пептидного остова. Она возникает в результате образования водородных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои). У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы — глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Такая структура стабилизируется ионными, водородными, ковалентными дисульфидными связями (образуются между атомами серы, входящими в состав цистеи-на, цистина и мегионина), а также гидрофобными взаимодействиями. Многие белки с особо сложным строением состоят из нескольких полипептидных цепей (субъединиц), образуя четвертичную структуру белковой молекулы. Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части — гема. Типы связей между аминокислотами в молекуле белка. 2 группы: 1. КОВАЛЕНТНЫЕ СВЯЗИ - обычные прочные химические связи. а) пептидная связь(формируется за счет COOH-группы одной аминокислоты и NH2-группы соседней аминокислоты) б) дисульфидная связь(цистеин - аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи; может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу) 2. НЕКОВАЛЕНТНЫЕ (СЛАБЫЕ) ТИПЫ СВЯЗЕЙ - физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи. Очень чувствительны к физико-химическим условиям среды. Они неспецифичны, то есть соединяются друг с другом не строго определенные химические группировки, а самые разнообразные химические группы, но отвечающие определенным требованиям. а) Водородная связь(связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из электроотрицательных атомов ковалентно) б) Ионная связь(возникает между положительно и отрицательно заряженными группировками) в) Гидрофобное взаимодействие(неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды). .Физико-химические св-ва белков.Денатурация.Использование процесса денатурации. Водные растворы белков имеют свои особенности. Во-первых, белки обладают большим сродством к воде, т.е. они гидрофильны. Это значит, что молекулы белка, как заряженные частицы, притягивают к себе диполи воды, которые располагаются вокруг белковой молекулы и образуют водную или гидратную оболочку. Эта оболочка предохраняет молекулы белка от склеивания и выпадения в осадок.Однако белковые молекулы имеют очень большие размеры, поэтому белки не могут образовывать истинных растворов, а только коллоидные. Наиболее характерными физико-химическими свойствами белков являются высокая вязкость растворов, незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление. Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2- и СООН-групп. Для них характерны все свойства кислот и оснований. Белки обладают явно выраженными гидрофильными свойствами.ДЕНАТУРАЦИЯ - это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур. Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями. Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические: физические- высокие температуры, УФ-лучи, ультразвук; химические- кислоты и щелочи, органические растворители. Для практических целей иногда используют процесс денатурации в «мягких» условиях, например при получении ферментов или других биологически активных белковых препаратов в условиях низких температур в присутствии солей и при соответствующем значении рН. .Белки как амфотерные электролиты.Поведение белков в электрическом поле.Электрофорез.Применение его в мед-не.Изоэлектрическая точка белков.Определение суммарного заряда белка. Важнейшим свойством белков является их способность проявлять как кислые так и основные, то есть выступать в роли амфотерных электролитов. Это обеспечивается за счет различных диссоциирующих группировок, входящих в состав радикалов аминокислот. Например, кислотные свойства белку придают карбоксильные группы аспарагиновой глутаминовой аминокислот, а щелочные - радикалы аргинина, лизина и гистидина. Эти же группировки имеют и электрические заряды, формирующие общий заряд белковой молекулы. В белках, где преобладают аспарагиновая и глутаминовая аминокислоты, заряд белка будет отрицательным, избыток основных аминокислот придает положительный заряд белковой молекуле. Вследствие этого в электрическом поле белки будут передвигаться к катоду или аноду в зависимости от величины их общего заряда. Так, в щелочной среде (рН 7 - 14) белок отдает протон и заряжается отрицательно, тогда как в кислой среде (рН 1 - 7) подавляется диссоциация кислотных групп и белок становится катионом. Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако при определенных значениях рН число положительных и отрицательных зарядов уравнивается и молекула становится электронейтральной, т.е. она не будет перемещаться в электрическом поле. Такое значение рН среды определяется как изоэлектрическая точка белков. При этом белок находится в наименее устойчивом состоянии и при незначительных изменениях рН в кислую или щелочную сторону легко выпадает в осадок.Электрофорез- направленное движение коллоидных частиц под действием внешнего электрического поля. Электрофорез исп-ся в физиотерапии. Лечебное вещество наносится на прокладки электродов и под действием электрического поля проникает в организм через кожные покровы (в терапии, неврологии, травматологии и др.) или слизистые оболочки (в стоматологии, ЛОР, гинекологии и др.) и влияет на физиологические и патологические процессы непосредственно в месте введения. Электрический ток также оказывает нервно-рефлекторное и гуморальное действие. .Классификация белков. Важнейшие представители протеинов и протеидов. Биологические функции белков. В основе классификации лежат разные принципы: 1)по степени сложности (простые и сложные); 2) по форме молекул (глобулярные и фибриллярные белки); 3)по растворимости в отдельных растворителях (водорастворимые, растворимые в слабых солевых растворах — альбумины, спирторастворимые — проламины, растворимые в щелочах — глютелины),; 4)по выполняемым ими функциям, например запасные белки, скелетные, белки- ферменты, гормоны и т. д. По степени сложности белки делят на протеины (простые белки), состоящие только из остатков аминокислот, и протеиды (сложные белки), состоящие из белковой (апобелок) и небелковой частей (простетическая группа). Протеины — запасные, скелетные, отдельные ферментные белки. К ним относят: -альбумины — белки с относительно небольшой молекулярной массой, хорошо растворимые в воде и в слабых солевых растворах; типичный представитель альбуминов- белок яйца — овальбумин; -глобулины — растворяются в водных растворах солей. Это очень распространенные белки, входят в состав мышечных волокон, крови, молока, они составляют большую часть семян бобовых и масличных культур. Представителем глобулинов животного происхождения является лактоглобулин молока; к глобулинам принадлежат глобулины крови и мышечный белок миозин. -проламины — растворяются в 60—80 %-ном растворе этилового, спирта. Это характерные белки семян злаков, например: глиадин — пшеницы и ржи, зеин — кукурузы, авенин — овса, гордеин — ячменя; -глютелины — растворяются только в растворах щелочей. Из них следует выделить оризенин из семян риса и глютенин клейковинных белков пшеницы. Протеиды — из этой группы сложных белков отметим только следующие: -нуклеопротеиды — кроме белка включают нуклеиновые кислоты. Нуклеиновые кислоты относятся к важнейшим биополимерам, которым принадлежит огромная роль в наследственности; -липопротеиды — содержат кроме белка липиды. Содержатся в протоплазме и мембранах. Принимают участие в формировании клейковинных белков; -фосфопротеиды — кроме белка присутствует фосфорная кислота. Им принадлежит важная роль в питании молодого организма. Пример: казеин — белок молока. Белки выполняют множество самых разнообразных функций, характерных для живых организмов: каталитическая(ферменты), регуляторная(гормоны), транспортная(гемоглобин), защитная(свертывание крови, иммуноглобулины), сократительная(актин и миозин), структурная(коллаген, кератин). .Нуклеопротеиды.Химический состав белковой и простетической группы.Структурные компоненты нукл. кислот.Номенклатура нуклеотидов, нуклеозидов, азотистых оснований.Их химическое строение. Нуклеопротеиды, широко распространённые в природе комплексы нуклеиновых кислот с белками. В зависимости от характера входящей в состав Н. нуклеиновой кислоты различают дезоксирибонуклеопротеиды (ДНП) и рибонуклеопротеиды (РНП). ДНП содержатся в ядрах всех клеток (составляют основу ядерного вещества — хроматина) и в головках сперматозоидов. Белковым компонентом ДНП служат преимущественно белки основного характера — гистоны; в головках сперматозоидов некоторых животных (главным образом птиц и рыб) присутствуют белки с более мелкими молекулами — протамины. Гистоны и протамины при нейтральных рН несут большой положительный заряд, что обеспечивает возможность сильного электростатического взаимодействия с отрицательно заряженными нуклеиновыми кислотами. Полагают, что белки в ДНП располагаются в желобках двойной спирали ДНК, стабилизируя её структуру и выполняя определённые биологической функции (регуляция матричной активности ДНК). Из РНП состоят многие вирусы, информосомы, рибосомы. Нуклеопротеиды имеют важное значение, т.к. их небелковая часть представлена ДНК и РНК. Простетическая группа представлена в основном гистонами и протаминами. Такие комплексы ДНК с гистонами обнаружены в сперматозоидах, а с гистонами - в соматических клетках, где молекула ДНК "намотана" вокруг молекул гистонов. Нуклепротеидами по своей природе являются вне клетки вирусы - это комплексы вирусной нуклеиновой кислоты и белковой оболочки - капсида. Хромопротеиды. Являются сложными белками, простетическая группа которых представлена окрашенными соединениями. К хромопротеидам относятся гемоглобин, миоглобин (белок мышц), ряд ферментов (каталаза, пероксидаза, цитохромы), а также хлорофилл. Гликопротеиды. Представляют собой сложные белки простетическая группа которых образована производными углеводов (аминосахарами, гексуроновыми кислотами). Гликопротеиды входят в состав клеточных мембран. Фосфопротеиды. Имеют в качестве небелкового компонента фосфорную кислоту. Представителями данных белков являются казеиноген молока, вителлин (белок желтков яиц), ихтулин (белок икры рыб). Липопротеиды-ложные белки, простетическая группа которых образована липидами. Нуклеи́новые кисло́ты (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.Нуклеиновая кислота включает: азотистое основание, сахар(пентоза), остаток фосфотрной кислоты, а нуклеозид не имеет фосфорной кислоты. В состав нуклеиновый кислот входят два производных пурина – аденин и гуанин и три производных пиримидина – цитозин, урацил (в РНК) и тимин (в ДНК). Номенклатура: нуклеотид-пример- дезоксиаденозин-5- монофосфат; нуклеозид-дезокситимидин Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Пять соединений этого класса являются основными структурными компонентами нуклеиновых кислот. Общими для всей живой материи. Пуриновые основания аденин (Ade, но не А) и гуанин (Guа), а также пиримидиновое основание цитозин (Cyt), входят в состав ДНК и РНК. Соединения азотистых оснований с рибозой или 2-дезоксирибозой (см. с. 44) носят название нуклеозиды. Так, например, аденин и рибоза образуют нуклеозид аденозин. Соответствующие производные других азотистых оснований носят названия гуанозин (G), уридин (U), тимидин (T) и цитидин (С). Если углеводный остаток представлен 2-дезоксирибозой образуется дезоксинуклеозид, например 2'-дезоксиаденозин. .Гемоглобин,строение и св-ва.Окси-,карбокси-, карб- и метгемоглобин.Вариации первичной структуры и св-ва гемоглобина.Гемоглобинопатии. Гемоглобин- белки, находящиеся в эритроцитах. Важнейшие функции: -перенос кислорода из легких к периферическим тканям; -участие в переносе углекислого газа и протонов из тканей в легкие Гемоглобин является сложным белком класса хромопротеинов, то есть в качестве простетической группы здесь выступает особая пигментная группа, содержащая химический элемент железо — гем. Гемоглобин человека является тетрамером, то есть состоит из четырёх субъединиц. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Гемоглобин - основной дыхательный пигмент и главный компонент эритроцита, выполняющий важные функции в организме человека: перенос кислорода из легких в ткани и углекислого газа из тканей в легкие. Он также играет существенную роль в поддержании кислотно-основного равновесия крови. Буферная система, создаваемая гемоглобином, способствует сохранению рН крови в определенных пределах. В крови гемоглобин существует по крайней мере в четырех формах: -оксигемоглобин(гемоглобин + кислород); -дезоксигемоглобин(форма гемоглобина, в которой он способен присоединять др. соединения); -карбоксигемоглобин(гемоглобин + угарный газ); -метгемоглобин(в геомглобине железо окислилось до степени +3). Важность первичной структуры белков для формирования их конформации и функции можно проследить на примерах наследственных заболеваний, связанных с изменением первичной структуры гемоглобина. В настоящее время известно около 300 вариантов НЬА, имеющих в первичной структуре ?- или ?-цепей лишь небольшие изменения. Некоторые из них почти не влияют на функцию белка и здоровье человека, другие снижают функцию белка и особенно в экстремальных ситуациях снижают возможность адаптации человека, третьи - вызывают значительные нарушения функций НbА и развитие анемии, что приводит к тяжёлым клиническим последствиям. Возможные изменения: замена аминокислоты на поверхности гемоглобина; изменения аминокислотного состава в области активного центра гемоглобина; изменения аминокислотного состава, деформирующие третичную структуру гемоглобина; Гемоглобинопатии (от гемоглобин и греч. páthos — страдание, болезнь), гемоглобинозы, состояния, обусловленные присутствием в красных кровяных тельцах (эритроцитах) одного или нескольких аномальных (патологических) гемоглобинов. Выделено свыше 50 патологических разновидностей гемоглобина, возникших в результате врождённого, передаваемого по наследству дефекта образования белковой части гемоглобина — глобина. При аномалиях гемоглобина нарушаются физико-химические свойства эритроцитов, обменные процессы в них; эритроциты становятся менее устойчивыми к различным гемолизирующим факторам. Наиболее распространены и отличаются тяжестью проявлений серповидноклеточная (дрепаноцитарная) анемия и талассемия. Серповидноклеточная анемия (HbS) связана с наличием в эритроцитах патологического гемоглобина S (первая буква англицская side — серп). При этой форме Г. эритроциты в условиях снижения парциального давления кислорода в окружающей среде приобретают форму серпа. При увеличении в крови количества серповидных эритроцитов нарастает вязкость крови, замедляется кровоток, происходит разрушение серповидных эритроцитов, развиваются тромбозы в различных органах. У практически здоровых носителей HbS серповидность эритроцитов и появление признаков заболевания могут наступить лишь в условиях гипоксии. Поэтому всем носителям HbS противопоказаны служба в авиации, а также полёты на самолётах без достаточного кислородного обеспечения. Талассемия — заболевание, распространённое в средиземноморских странах. Характеризуется значительным повышением содержания HbF в крови. Полагают, что при этом образование нормального гемоглобина HbA подавлено. Нарушено также образование железосодержащей части гемоглобина (гема). Различают большую, малую и минимальную талассемию. Для всех форм талассемии характерно наличие в крови "мишеневидных" эритроцитов, в которых гемоглобин расположен в центре клетки в виде мишени. .Хромопротеиды.Гемоглобин,миоглобин,каталаза,цитохромоксидаза,цитохромы.Их хим-я природа и значение для организма. Хромопротеиды- сложные белки, содержащие окрашенные простетические (небелковые) группы. Наиболее обширную группу Х. составляют железосодержащие белки гемопротеиды, к которым относятся цитохромы (переносчики электронов в процессах клеточного дыхания, при фотосинтезе, в системах гидроксилирования), некоторые ферменты (каталаза, пероксидаза), дыхательные пигменты (гемоглобин, миоглобин). Гемоглобин выполняет в организме важную роль переносчика кислорода и принимает участие в транспорте углекислоты. Он состоит из белка глобина и четырёх молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять и отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т. е. железо остаётся двухвалентным. Миоглоби́н — кислород-связывающий белок скелетных мышц и мышцы сердца.Миоглобин- белок в мышцах, принимающий кислород от гемоглобина и хранящий его там до того момента, когда он потребуется для окисления пищевых веществ. Эти процессы в организме сопряжены с одновременным переносом углекислого газа, переправляемого из тканей в легкие, в основном в виде бикарбоната. Перенос бикарбоната и углекислого газа идет также при содействии гемоглобина. Он способен связывать до 14% общего количества кислорода в организме. Это его свойство играет важную роль в снабжение кислородом работающих мышц. Каталаза - фермент класса оксиредуктаз . Хромопротеид , состоит из четырех идентичных субъединиц. Катализирует разложение H2O2 до воды и кислорода. Она широко распространена в тканях (особенно много ее в печени). Каталаза - один из основных ферментов разрушения активных форм кислорода. Каталаза является основным первичным антиоксидантом системы защиты, который катализирует разложение перекиси водорода до воды. Каталаза-это тетрамерный гем-содержащий белок , который образуется в в цитозоле в виде мономеров, не содержащих гем. Мономеры переносятся в просвет пероксисом и там собираются в тетрамеры в присутствии гема. Цитохромоксидаза, цитохром- фермент класса оксидоредуктаз; катализирует конечный этап переноса электронов на кислород в процессе окислительного фосфорилирования. Фермент,содержащий железо и медь, катализирующий перенос электронов с цитохрома С на молекулярный кислород; участвует в процессах тканевого дыхания. Окисление цитохрома с сопровождается появлением мембранного протонного потенциала , к-рый используется клеткой для обеспечения всех видов работ, выполняемых биомембранами, и в первую очередь для синтеза АТФ. Функция оксидазы - восстановление кислорода с помощью электронов цитохрома с и транспорт протонов сквозь клеточную мембрану. В процессе катализа оксидазы из одной молекулы O2 получается две молекулы H2O. Четыре электрона из четырех молекул цитохрома используются в виде восстанавителя. Кроме того, для получения воды нужны протоны из матрикса митохондрий. Энергия, полученная в этом процессе, используется для создания трансмембранного протонного градиента (градиент также создается во время двух других реакций дыхательной электронтранспортной цепи). Один цикл реакции способствует транспорту четырех протонов из внутреннего отделения митохондрий в интермембранное пространство. .Гликопротеиды,строение и функции.Гликозаминогликаны и протеогликаны.Сиаловые кислоты,гепарин,гиалуроновая кислота,хондроитинсерная кислота. Гликопротеиды, сложные белки, содержащие углеводы. Гликопротеины широко распространены в природе. К ним относятся важные компоненты сыворотки крови (иммуноглобулины, трансферины и др.), групповые в-ва крови, определяющие групповую принадлежность крови человека и животных, антигены мн. вирусов (гриппа, кори, энцефалита и др.). По одной из классификаций гликопротеины делятся на: собственно гликопротеиды (гаптоглобин, фибриноген, тиреоглобулин и др.); мукопротеиды (комплексы белков с гиалуроновой, Хондороитинсерной к-тами, гепарином); мукопротеины (a1-кислый гликопротеид, фетуин, группоспецифич. вещества крови и др.). Гликопротеиды входят в состав клеточных мембран. Гликозаминогликаны(мукополисахариды) — углеводная часть углеводсодержащих биополимеров гликозаминопротеогликанов или протеогликанов. Гликозаминогликаны в составе протеогликанов входят в состав межклеточного вещества соединительной ткани, содержатся в костях, синовиальной жидкости, стекловидном теле и роговице глаза. Вместе с волокнами коллагена и эластина, протеогликаны образуют соединительнотканный матрикс (основное вещество). Один из представителей гликозаминогликанов — гепарин, обладающий противосвёртывающей активностью, находится в межклеточном веществе ткани печени, лёгких, сердца, стенках артерий. Протеогликаны покрывают поверхность клеток, играют важную роль в ионном обмене, иммунных реакциях, дифференцировке тканей. Молекулы гликозаминогликанов состоят из повторяющихся звеньев, которые построены из остатков -уроновых кислот (D-глюкуроновой или L-идуроновой) и сульфатированных и ацетилированных аминосахаров. Кроме указанных основных моносахаридных компонентов, в составе гликозаминогликанов в качестве так называемых минорных сахаров встречаются L-фукоза, сиаловые кислоты, D-манноза и D-ксилоза. В их состав обязательно входят остатки мономера либо глюкозамина, либо галактозамина. Второй главный мономер дисахаридных единиц также представлен двумя разновидностями: D-глюкуроновой и L-идуроновой кислотами.Биол, роль гликозаминогликанов в организме велика: они участвуют в осуществлении опорной функции, проницаемости клеточных мембран, "склеивании" соединительнотканных волокон, смазывании суставных поверхностей и клеток, в процессах роста, дифференцировки и регенерации тканей, оплодотворения и размножения, в водно-солевом обмене между клетками и межклеточной жидкостью, в осуществлении реакций иммунитета. В межклеточном веществе многих органов (печени, легких, сердца, сосудов) содержатся гепарин и дерматансульфат, препятствующие свертыванию крови. ПРОТЕОГЛИКАНЫ - углевод-белковые компоненты животных тканей, в к-рых полисахаридные цепи ковалентно связаны с белком, занимающим в молекуле центр. положение.Функции протеогликанов: создание гидратированного пространства между клетками; регулирование активности сигнальных молекул (связывание сигнальных молекул с протеогликанами может усиливать или ингибировать активность сигнальных молекул). Нейраминовая (сиаловая) кислота. Нейраминовая кислота является компонентом простатической группы углеводосодержащих белков крови. Она играет важную роль в процессах жизнедеятельности организма. Так, отсутствие нейраминовой кислоты ведет к потере активности транскортина; в составе сиалому-копротеидов она обладает способностью связывать вирусы и т. д. У человека в норме наибольшее количество Сиаловая кислота обнаруживается в слюнных железах, в секретах различных слизистых оболочек, а также в сыворотке крови, где их содержание резко повышается при ряде заболеваний. Сиаловые кислоты являются полифункциональными соединениями с сильными кислотными свойствами. Гепарин известен прежде всего как антикоагулянт. Он синтезируется тучными клетками, которые являются разновидностью клеточных элементов соединительной ткани. Синтезируется в тучных клетках, скопления которых находятся в органах животных, особенно в печени, лёгких, стенках сосудов. По химической природе Г. — серусодержащий мукополисахарид, состоящий из глюкозамина, глюкуроновой кислоты и связанных с ними остатков серной кислоты. Гепарин получают из печени и лёгких крупного рогатого скота. Применяют в медицине как антикоагулянт для профилактики и лечения тромбозов, в форме инъекций и в виде мазей.Гиалуроновая к-та- широко распространена в тканях животных и человека, существенный компонент основного вещества соединительной ткани. Гиалуроновая кислота регулирует водный баланс кожи, её тонус и упругость, сохраняя при этом внешнюю гладкость и подтянутость – тургор кожи. Гиалуроновая кислота связывает воду в межклеточных пространствах, повышая тем самым сопротивление тканей сжатию. Гиалуроновую кислоту вырабатывают клетки соединительной ткани фибробласты. Хондроитинсерные кислоты- хондроитинсульфаты, полисахариды, составляющие основу хрящевой и костной ткани, роговицы и некоторых др. видов соединительной ткани. Различают три вида Х. к. — А, В и С. Кислоты А и С представляют собой линейные гетерополимеры, состоящие из чередующихся остатков N-ацетилгалактозамина и D-глюкуроновой кислоты и различающихся лишь положением остатка серной кислоты. Х. к. В, называют также дерматосульфатом и b-гепарином, вместо D-глюкуроновой кислоты содержит её изомер — a-идуроновую кислоту. В природных источниках Х. к. встречаются в комплексе с белком, с которым они связаны ковалентной связью. .Фосфопротеиды,значение.Металлопротеиды и их роль. Фосфопротеиды, фосфопротеины, сложные белки, в состав которых входит фосфорильная группа, присоединённая к аминокислотным остаткам полипептидной цепи белка. Обычно фосфорильная группа (–PO32-) присоединена к молекулам Ф. через остатки аминокислот серина или треонина. К Ф. относятся: казеин – один из основных белков молока, овальбумин и вителлин – белки куриного яйца, фосфорилированные модификации гистонов, ферменты РНК-полимеразы, некоторые фосфотрансферазы, фосфатазы и др. Ф. широко распространены в живых организмах, участвуя в обмене веществ, регуляции ядерной активности клетки, транспорте ионов и окислительных процессах в митохондриях. Имеют определенно выраженный кислотный характер. Главнейшим представителем фосфопротеидов является казеин молока. Он обладает настолько ясно выраженным кислотным характером, что разлагает углекислые соли с выделением углекислого газа. Казеин растворяется в слабых растворах щелочей, образуя с ними соли. Соли казеина называются казеинатами. При нагревании казеин не свертывается. При действии кислот на соли казеина он выделяется в свободном виде. Этим объясняется свертывание молока при прокисании. Фосфор относится к жизненно необходимым веществам, он входит в состав всех тканей организма, особенно мышц и мозга, участвует во всех видах обмена веществ, необходим для нормального функционирования нервной системы, сердечной мышцы и т. д. В тканях организма и пищевых продуктах фосфор содержится в виде фосфорной кислоты и органических соединений фосфорной кислоты (фосфатов). Металлопротеи́ны (металлопротеиды) — сложные белки, в состав молекул которых входят также ионы одного или нескольких металлов.Многие металлопротеины играют важную физиологическую роль. Типичными металлопротеинами являются белки, содержащие негемовое железо — трансферрин, ферритин, гемосидерин, имеющие важное значение в обмене железа в организме. Металлопротеины часто являются ферментами. Ионы металлов в этом случае:участвуют в ориентации субстрата в активном центре фермента; входят в состав активного центра фермента и участвуют в катализе, являясь, например, акцепторами электронов на определенной стадии ферментативной реакции. -медь – цитохромоксидаза, в комплексе с другими ферментами дыхательной цепи митохондрий участвует в синтезе АТФ, -железо – ферритин, депонирующий железо в клетке, трансферрин, переносящий железо в крови, -цинк – алкогольдегидрогеназа, обеспечивающая метаболизм этанола и других спиртов, лактатдегидрогеназа, участвующая в метаболизме молочной кислоты, карбоангидраза, образующая угольную кислоту из CO2 и H2O, щелочная фосфатаза, гидролизующая фосфорные эфиры различных соединений, α2-макроглобулин, антипротеазный белок крови. -кальций – α-амилаза слюны и панкреатического сока, гидролизующая крахмал. Биологическая роль: депо и транспорт железа (ферритин, трансферрин), депо и транспорт меди (церулоплазмин) и др. .Липоротеиды,строение,представители,роль.Транспортные липопротеиды крови. Липопротеиды, липопротеины, комплексы белков и липидов. Липопротеины представляют собой комплексы, состоящие из белков (аполипопротеинов; сокращенно — апо-ЛП) и липидов, связь между которыми осуществляется посредством гидрофобных и электростатических взаимодействий. Липопротеины подразделяют на свободные, или растворимые в воде (липопротеины плазмы крови, молока и др.), и нерастворимые, т. н. структурные (липопротеины мембран клетки, миелиновой оболочки нервных волокон, хлоропластов растений).Представлены в растительных и животных организмах в составе всех биологических мембран, пластинчатых структур (в миелиновой оболочке нервов, в рецепторных клетках сетчатки глаза) и в свободном виде в плазме крови. Л. различаются по химическому строению и соотношению липидных и белковых компонентов. По скорости оседания при центрифугировании Л. подразделяют на 4 главных класса: 1) Л. высокой плотности; 2) Л. низкой плотности; очень низкой плотности;4) хиломикроны. Липопротеиды высокой плотности переносят жирные кислоты, холестерин, фосфолипиды, триглицериды. Проникая в стенку сосуда, они не только не "разваливаются" с высвобождением холестерина, а наоборот "захватывают" его и уносят в печень. Они являются самыми важными факторами обратного транспорта холестерина из тканей в печень, где происходит его катаболизм. Хиломикроны – частицы, которые образуются в слизистой кишечника с пищевого жира и содержат преимущественно триглицериды. Они поступают в системный кровоток через грудной лимфатический протоки метаболизируются ферментом, который локализируется на поверхности эндотелия сосудов – липопротеидлипазой. Липопротеиды очень низкой плотности образуются в печени, содержат 10-15% от общего холестерина и обогащены триглицеридами. В метаболизме липопротеидов очень низкой плотности также принимает участие липопротеидлипаза. В результате липопротеиды очень низкой плотности трансформируются в более мелкие частицы (ЛППП), почти половина которых у здоровых людей выводится печенью, другие деградирют в липопротеиды низкой плотности. Некоторые формы остаточных липопротеидов очень низкой плотности являются атерогенными. Липопротеиды промежуточной плотности являются промежуточной фазой липопротеидов очень низкой плотности. Они также атерогенны. Липопротеиды низкой плотности содержат 60-70% общего холестерина сыворотки крови. Они считаются основными переносчиками холестерина к периферическим тканям.Они осуществляют транспорт липидов как экзогенного (пищевого), так и эндогенного происхождения. Отдельные липопротеины захватывают избыточный холестерин из клеток периферических тканей для транспорта его в печень, где происходит его окисление в желчные кислоты и выведение с желчью. С участием ЛП транспортируются также жирорастворимые витамины и гормоны. Плазменные липопротеины имеют сферическую форму. Внутри находится жировая «капля», содержащая неполярные липиды (ТГ и эстерифицированный ХС) и формирующая ядро ЛП-частицы. .Углеводы,роль.Моносахариды,представители и св-ва.Наследственные нарушения обмена галактозы.Глюкоза. Углеводы-содержат 2 компонента-углерод и воду. точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу, а также несколько гидроксильных групп. По способности к гидролизу на мономеры углеводы делятся на две группы(по количеству мономеров): простые (моносахариды) и сложные (олигосахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием простых углеводов, мономеров. Простые углеводы легко растворяются в воде. Биологическая роль и биосинтез углеводов: - выполняют структурную функцию, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений); - выполняют пластическую функцию — хранятся в виде запаса питательных веществ, а также входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК; - являются основным энергетическим материалом; - участвуют в обеспечении осмотического давления и осморегуляции. Так, в крови содержится 100—110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови; - выполняют рецепторную функцию — многие олигосахариды входят в состав воспринимающей части клеточных рецепторов или молекул-лигандов. Представители: 1)моносахариды:- глюко́за или виноградный сахар, или декстроза встречается в соке многих фруктов и ягод, в том числе и винограда, отчего и произошло название этого вида сахара. Является шестиатомным сахаром (гексозой). Как и все альдегиды, глюкоза легко окисляется. Также обладает специфическими свойствами:а) спиртовое брожение с образованием этилового спирта и углекислого газа C6H12O6-> 2 C2H5OH+ 2 CO2, б) молочно-кислое брожение с образованием молочной кислоты, в) маслянокислое брожение, при котором образуется масляная кислота ,и выделяются углекислый газ и водород. Глюкоза — основной продукт фотосинтеза. Глюкозу используют при интоксикации (например при пищевом отравлении или деятельности инфекции), вводят внутривенно струйно и капельно, так как она является универсальным антитоксическим средством. - фруктоза, или плодовый сахар C6H12O6 — моносахарид, который в свободном виде присутствует почти во всех сладких ягодах и плодах. - манноза — моносахарид с общей формулой C6H12O6 (эпимер глюкозы); компонент многих полисахаридов и смешанных биополимеров растительного, животного и бактериального происхождения. В свободном виде обнаружена в плодах многих цитрусовых. 2)олигосахариды:- сахароза C12H22O11, или свекловичный сахар, тростниковый сахар, в быту просто сахар — дисахарид, состоящий из двух моносахаридов — α-глюкозы и β-фруктозы; она встречается во многих фруктах, плодах и ягодах. Особенно велико содержание сахарозы в сахарной свёкле и сахарном тростнике, которые и используются для промышленного производства пищевого сахара.Сахароза имеет высокую растворимость. - мальтоза- солодовый сахар- природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. - лактоза С12Н22О11 — углевод группы дисахаридов, содержится в молоке и молочных продуктах. Молекула лактозы состоит из остатков молекул глюкозы и галактозы.Лактозу иногда называют молочным сахаром. 3) полисахариды: - гликоген — полисахарид, образованный остатками глюкозы; основной запасной углевод человека и животных. Гликоген является основной формой хранения глюкозы в животных клетках. Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц). Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы. - крахма́л — полисахариды амилозы и амилопектина, мономером которых является альфа-глюкоза. Формула крахмала:(C6H10O5)n. Крахмал представляет собой смесь линейных и разветвлённых макромолекул.При действии ферментов или нагревании с кислотами подвергается гидролизу. Крахмал в качестве резервного питания накапливается в клубнях, плодах, семенах растений. - целлюло́за— [С6Н7О2(OH)3]n, полисахарид, клетчатка; главная составная часть клеточных оболочек всех высших растений. Целлюлоза состоит из остатков молекул глюкозы. Глюкоза является одним из важнейших компонентов крови; количество ее отражает состояние углеводного обмена. Глюкоза равномерно распределяется между плазмой и форменными элементами крови с некоторым превышением ее концентрации в плазме. Содержание глюкозы в артериальной крови выше, чем в венозной, что объясняется непрерывным использованием глюкозы клетками. Уровень глюкозы в крови регулируется центральной нервной системой, гормональными факторами и функцией печени. Углеводный обмен, процессы усвоения углеводов в организме; их расщепление с образованием промежуточных и конечных продуктов (деградация, диссимиляция), а также новообразование из соединений, не являющихся углеводами (глюконсогенез), или превращение простых углеводов в более сложные. Под влиянием пищеварительных ферментов гидролаз (различного типа амилаз, гликозидаз) сложные поли- и олигосахариды подвергаются расщеплению до моносахаридов — гексоз или пентоз, которые утилизируются организмом. Полисахариды ферментативно расщепляются также фосфорилазами с образованием глюкозо-1-фосфата. Один из наиболее важных углеводов — глюкоза — является не только основным источником энергии, но и предшественником пентоз, уроновых кислот и фосфорных эфиров гексоз. Глюкоза образуется из гликогена и углеводов пищи — сахарозы, лактозы, крахмала, декстринов. Кроме того, глюкоза синтезируется в организме из различных неуглеводных предшественников (рис. 1). Этот процесс носит название глюконеогенеза и играет важную роль в поддержании гомеостаза. В процессе глюконеогенеза участвует множество ферментов и ферментных систем, локализованных в различных клеточных органеллах. Глюконеогенез происходит главным образом в печени и почках. Глюкоза является субстратом сложного энергообразующего процесса, называемого гликолизом. Помимо гликолиза, глюкоза может превращаться окислительным, или пентозофосфатным, путем, ведущим к образованию рибозы и дезоксирибозы - углеводов, необходимых для синтеза нуклеиновых кислот и ряда коферментов. .Стерины,стериды,строение.Производные стеринов.Провитамины гр.Д,гормоны коры надпочечников,половые гормоны,желчные кислоты. Стерины (стеролы) – производные стероидов. В основе структуры стеринов лежит скелет углеводорода холестана, алифатический радикал у С-17 которого включает 8 атомов углерода. В качестве обязательного заместителя стерины содержат гидроксильную группу у С-3, т.е. являются вторичными спиртами.Холестерол - наиболее распространенный представитель стеринов, присутствующий практически во всех липидах, биологических мембранах, крови и желчи.Стерины обнаружены в клетках животных (зоостерины), растений (фитостерины), грибах (микостерины), некоторых видов бактерий. Наиболее важными представителями зоостеринов является холестерин, а фитостеринов – стигмастерин и ситостерин. В клетках дрожжей содержится эргостерол.Стерины – кристаллические вещества, хорошо растворимые в хлороформе, эфире, горячем спирте и практически не растворимы в воде. В организме стерины окисляются и образуются производные, которые называются стероидами. Основная биологическая роль стеринов состоит в том, что они являются предшественниками многих биологически активных соединений – стероидных гормонов, витаминов, желчных кислот. Важная роль стеринов в формировании клеточных структур, в частности, клеточных мембран. В организмах высших животных и человека стерины содержатся в печени, нервной ткани, крови, подкожной жировой ткани.Стерины принимают участие в образовании основных транспортных форм липидов – хиломикронов, альфа- и бета-липопротеидов. С высшими жирными кислотами стерины образуют важную группу простых липидов – стеридов, которые являются эфирами холестерина и высших жирных кислот. Синтез стеринов осуществляется в клетках печени с ацетил-КоА.Стериды являются сложными эфирами жирных кислот и стеринов. К стероидам относятся биологически активные соединения, главным образом, животного происхождения, являющиеся производными полициклического углеводорода гонана (старое название - стеран, систематическое название - циклопентанпергидрофенантрен).Стериды присутствуют в составе тканей животных и растений как в свободном состоянии, так и в виде сложных эфиров. Стерины молока, сала, желчи находятся в свободном состоянии, в то время как в печени около 50% стеринов связано с жирными кислотами. Из стеридов наиболее распространен холестерин, который должен быть сбалансирован (или сводиться к нормальному уровню) при соблюдении той или иной диеты. К стеридам относится ряд биологически активных веществ: гормоны коры надпочечников, половые гормоны, желчные кислоты, провитамин D и другие соединения. Обмен углеводов и липидов. Хотя по функциям стериды не относятся к незаменимым веществам в питании человека, их содержание в пище необходимо. Стероиды — вещества животного или реже растительного происхождения, обладающие высокой биологической активностью. Стероиды образуются в природе из изопреноидных предшественников. В регуляции обмена веществ и некоторых физиологических функций организма участвуют стероидные гормоны. В группу стероидов входят содержащиеся в организме человека стероидный спирт холестерин, а также желчные кислоты — соединения, имеющие в боковой цепи карбоксильную группу, например, холевая кислота.Витамины — сложные органические соединения, обладающие высокой биологической активностью, содержащиеся в пищевых продуктах в очень небольшом количестве, но являющиеся жизненно необходимыми компонентами пищи. Провитамины- вещества,по сути не являющиеся витаминами,но могут в них превращаться при опр-х условиях.Витамин D(жирорастворимый) регулирует фосфорно-кальциевый обмен, обеспечивает всасывание кальция и фосфора в тонкой кишке, реабсорбцию фосфора в почечных канальцах и транспорт кальция из крови в костную ткань. Витамин D помогает в борьбе против рахита, способствует повышению сопротивляемости организма, участвует в активизации кальция в тонком кишечнике и минерализации костей. Витамин D в основном образуется в организме человека в коже под влиянием ультрафиолетовых лучей, которые воздействуют на провитамин D, образующийся в более глубоких слоях кожи из холестерина. Сам витамин D мало активен. Для того чтобы превратиться в свою активную форму, витамин D в печени гидроксилируется и превращается в активный витамин D. Витамин Д всасывается в тонком кишечнике с участием желчи. Провитамины группы Д широко распространены в природе, особенно много их в печени рыб и животных, сливочном масле, яйцах. Дополнительными пищевыми источниками витамина D являются молочные продукты. Гормоны коркового вещества надпочечника - кортикостероиды - разделяются на три основных класса, которые синтезируются и выделяются в клубочковой, пучковой и сетчатой зонах коркового вещества, соответственно: Минералкортикоиды - влияют на уровни электролитов в крови и артериальное давление (у человека наиболее важен из них альдостерон); Глюкокортикоиды - оказывают выраженное действие на различные виды обмена (особенно углеводный) и на иммунную систему (главным из них у человека является кортизол); Половые стероиды (главные из них у человека - дегидроэпиандростерон и его сульфат - имеют слабое андрогенное действие). Исходным субстратом для синтеза всех кортикостероидов служит холестерин, который путем рецепторно-опосредованного эндоцитоза извлекается клетками из крови в составе липопротеинов низкой плотности, отщепляется от них после гидролиза в лизосомах и накапливается в липидных каплях. Ферментные системы, участвующие в синтезе стероидных гормонов (стероидогенезе), расположены в аЭПС и митохондриях. Стероиды не запасаются в клетках, а образуются и выделяются непрерывно. Механизм действия глюкокортикоидов выражается в воздействии на метаболизм путем индукции или ингибирования ферментов. Эти гормоны стимулируют глюконеогенез из белков и подавляют утилизацию глюкозы в периферических тканях. Их избыток приводит к катаболизму белка с отрицательным азотистым балансом и к повышению содержания сахара в крови. Глюкокортикоиды подавляют иммунные реакции и в очень больших дозах вызывают угнетение выработки антител. У человека единственным минералокортикоидом, поступающим в кровь, является альдостерон. Регуляция синтеза и секреции альдостерона осуществляется преимущественно ангиотензином-II, что дало основание считать альдостерон частью ренин-ангиотензин-альдостероновой системы или регуляторной оси, обеспечивающей регуляцию водно-солевого обмена и гемодинамики. Альдостерон поддерживает оптимальный водно-солевой обмен между внешней и внутренней средой организма. Одним из главных органов-мишеней гормона являются почки, где альдостерон вызывает усиленную реабсорбцию натрия в дистальных канальцах с его задержкой в организме и повышение экскреции калия с мочой. Под влиянием альдостерона происходит задержка в организме хлоридов и воды, усиленное выведение Н-ионов и аммония, увеличивается объем циркулирующей крови. В основе их структуры, так же как и в основе строения холестерина, эргостерина, желчных кислот, витаминов группы D, половых гормонов и ряда других веществ, лежит конденсированная кольцевая система циклопентанпергидрофенантрена. Половые гормоны- синтезируются половыми железами и в сетчатой зоне коры надпочечников; участвуют в реализации генотипа по мужскому или женскому типу, определяют вторичные половые признаки, регулируют ряд физиологических процессов. Часть П. г. синтезируется в коре надпочечников, а при беременности — и в плаценте. Биосинтез стероидных П. г. осуществляется в основном из холестерина. Биосинтез стероидных П. г. регулируется гипофизарными ЛГ и ФСГ; образующиеся П. г., в свою очередь, влияют на секрецию ЛГ и ФСГ путём воздействия на систему гипоталамус — гипофиз по принципу обратной связи. |