Реферат. Применение математической логики
Скачать 56.15 Kb.
|
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ) АВИАЦИОННЫЙ КОЛЛЕДЖ Реферат по основам алгебраической логики на тему: «Применение математической логики» Выполнил: студент 2 курса группы 16 ПКС Денисов И. Н. Проверила: Карелина А.В. Ростов-на-Дону 2021 г. Содержание Оглавление Выполнил: 1 Проверила: 1 Карелина А.В. 1 Введение……………………………………………………………………………1 История математической логики…………………………………………………3 Что исследует и не исследует математическая логика?.......................................9 Взаимодействие математической логики и лингвистики…………………………………10 Применение математической логики……………………………………………13 Математическая логика в технике……………………………………………….15 Математическая логика в криптографии………………………………………..16 Математическая логика в программировании………………………………….17 Список использованных источников……………………………………………19 1. Введение Математическая логика — логика по предмету, математика по методу. Логика отличается от других наук фундаментальностью рассматриваемых проблем, а математическая логика — сочетанием весьма сложного аппарата с сохранением философской глубины и с полностью неординарным взглядом на математический мир. Задачи, решаемые математической логикой. 1. Создание формальных языков и методов в логике, более точных и эффективных, чем использовавшихся до этого. 2. Удовлетворение естественного философского интереса к основаниям математики и расширение нашего понимания математики, ее возможностей и ограничений как науки. 3. Исследование в области компьютерных наук (computer science). Решение этих задач во многом обеспечивается реализацией следующей идеи: записывать математические утверждения в виде последовательностей символов и оперировать с ними по формальным правилам. 3. Исследование в области компьютерных наук (computer science). Решение этих задач во многом обеспечивается реализацией следующей идеи: записывать математические утверждения в виде последовательностей символов и оперировать с ними по формальным правилам. При этом правильность рассуждений можно проверять только по синтаксическим правилам, не рассматривая семантику (смысл) утверждений. Принято считать, что всякое точно сформулированное математическое утверждение можно записать формулой теории множеств (одной из наиболее общих формальных теорий), а всякое строгое математическое доказательство преобразовать в формальный вывод в этой теории (последовательность формул теории множеств, подчиняющуюся некоторым простым правилам). Цель: Изучить применение математической логики Задачи: Изучить применение мат. логики в технике Изучить применение мат. логики в криптографии Изучить применение мат. логики в программировании Изучить применение мат. логики в лингвистике 2. История математической логики Многие науки зародились в античной Греции, и логика не была исключением. Например, Фалес и Пифагор использовали логические рассуждения в математике. Логика возникла в культуре Древней Греции. Первое дошедшее до нас сочинение по логике - "Аналитики" Аристотеля (384-322гг. до н.э.). Независимо развивалась буддистская логика, но достоянием европейской науки она стала сравнительно недавно, поэтому известная нам логика "вышла" из логики Аристотеля. Математическая логика отличается тем, что пользуется языком математических символов. Ее основоположниками были: Д.Буль, Г.Фреге, Г.Пеано, Б.Рассел. Выдвинутая в 20-е годы XIX века программа Д.Гильберта обоснования математики с помощью логики привела к формализации математических теорий, много частных задач было решено. К настоящему времени доказана непротиворечивость элементарной геометрии, арифметики, анализа, аксиоматической системы теории множеств Цермело-Френкеля и т.д. Некоторые важные теории оказались полными: исчисление высказываний и исчисление предикатов, элементарная геометрия, теория векторных пространств и т.д. Но в других теориях получены предложения, которые нельзя ни доказать, ни опровергнуть. Так, в аксиоматической теории множеств Цермело-Френкеля это аксиома выбора и континуум-гипотеза. Как следует из теорем Геделя о неполноте, всякая достаточно богатая теория необходимо содержит такие предложения. Первые попытки математизации логических операций были предприняты на рубеже XIII—XIV вв., Раймундом Луллийем, сконструировавшим специальную «логическую машину» для механизации процесса логического вывода, которую он описал в своём трактате «Ars Magna» («Великое искусство»). Его машина состояла из семи концентрических кругов, на которых были обозначены термины и буквы. Для получения комбинаций Луллий использовал два концентрических круга, разделенных радиальными линиями на секторы. Вращая внутренний круг он получал таблицу различных комбинаций. Конечно эта попытка была несовершенной, но сыграла свою роль в дальнейшем развитии идеи математизации логических выводов. Первое дошедшее до нас сочинение по формальной логике — «Первая Аналитика» Аристотеля (384—322 гг. до нашей эры). В нём рассматриваются основы силлогистики — правила вывода одних высказываний из других. Так из высказываний «Все люди смертны» и «Сократ — человек» можно сделать вывод, что «Сократ смертен». Однако на практике такие рассуждения встречаются крайне редко. Вопрос о создании символической логики как универсального научного языка рассматривал Лейбниц в 1666 году в работе «Искусство комбинаторики» (De arte combinatoria). Он думал о записи высказываний на специальном языке, чтобы затем по логическим законам вычислять истинность других. В середине XIX века появились первые работы по алгебраизации аристотелевой логики, сформировавшие первооснову исчисления высказываний (Буль, де Морган, Шрёдер). В 1847 г. Дж. Буль опубликовал работу «The Mathematical Analysis of Logic» («Математический анализ логики»), а в 1854 г.— «An Investigation of the Laws of Thought» «Исследование законов мышления»). В них Буль изложил основы своей алгебры логики, где применил алгебраическую символику для записи логических операций и логических выводов. Булева алгебра логики в виде исчисления классов явилась первой системой математической логики. Основным результатом Булевой алгебры отмечается то, что теперь не ограничиваются применением символики к логике, а строят специальные логические исчисления; логические законы выступают в алгебре логики как необходимый момент формализованных систем; всякое суждение рассматривается как утверждение о равенстве классов; процесс умозаключения сводится к решению логических равенств. Однако, как отмечал Джевонс, операция вычитания в этой алгебре логики была не совсем удобной и иногда приводила к недоразумениям. Алгебру логики Буля усовершенствовали У. С. Джевонс и Э. Шрёдер. Сам Джевонс в книге «Чистая логика» критиковал излишнюю математизацию, алгебры логики Буля и предложил свою теорию, основанную на принципе замещения, то есть замене равного равным. В 1877 году Шрёдер опубликовал книгу по математической логике «Der Operationskreis des Logikkalkuls», в которой систематически изложил основы математической логики. Большой вклад в развитие математической логики внёс русский астроном, логик и математик, профессор Казанского университета П. С. Порецкий. Обобщив достижения Буля, Джевонса и Шрёдера, он на основе многолетних самостоятельных исследований создал содержательный труд «О способах решения логических равенств и об обратном способе математической логики», в котором значительно продвинул вперёд разработку аппарата алгебры логики. Работы П. С. Порецкого превосходят не только труды его коллег — современников, но и в части, касающиеся алгебры логики превосходят соответствующие разделы Уайтхеда и Рассела. П. С. Порецкий первым в России начал читать лекции по математической логике. Математическая логика, говорил он, «по предмету своему есть логика, а по методу математика». Задачу математической логики он видел в «построении теории умозаключений», но при этом, точно определял связь и границу между математикой и математической логикой. "Если формы, изучаемые алгеброй, суть количественные, — писал он, — то, наоборот, те формы, с которыми имеет дело логика, суть качественные, то есть существенно отличные от первых. Это различие ближайших предметов изучения алгебры и логики делает невозможным прямое перенесение, то есть непосредственное применение, принципов и приёмов алгебры к предмету логики. Однако приспособление этих приёмов (с полным сохранением их точности) к изучению качественных форм вполне возможно. Большим вкладом П. С. Порецкого в математическую логику явилась предложенная им полная законченная теория качественных форм. Он разработал теорию логических равенств, предложил наиболее общий, исчерпывающий метод нахождения всех эквивалентных форм посылок, всех следствий из них, всех простейших неразложимых посылок, на которые может быть разложена система посылок. В работах Фреге и Пирса (конец 1870-х — начало 1880-х) в логику введены предметные переменные, кванторы и, тем самым, основано исчисление предикатов. В 1879 году, в своей книге «Исчисление понятий», Фреге представил свою теорию исчисления высказываний, которая стала первым разделом современной математической логики. В ней Фреге представил первое аксиоматическое построение логики высказываний, ввёл в математическую логику понятие квантора, которое затем уже Пирс вводит в обиход логической науки. Фреге также ввёл понятие истинностного значения, предложил различать свойства и отношения как значения, соответственно, одноместных и многоместных пропозициональных функций. Но идеи Фреге не сразу нашли сторонников, а исчисления высказываний развивалось, как отмечает А. Чёрч, на основе более старой точки зрения, как это можно видеть в работах Пирса, Шрёдера и других. В конце 1880-х годов Дедекинд и Пеано применили эти инструменты в попытках аксиоматизации арифметики, при этом Пеано создал удобную систему обозначений, закрепившуюся и в современной математической логике. Он ввёл в математическую логику символы: ∈ — знак принадлежности множеству, ⊂ — знак включения, ⋃ — знак объединения, ∩ — знак пересечения множеств; разработал систему аксиом для арифметики натуральных чисел. Но главное, Пеано с помощью изобретённого им символического исчисления попытался исследовать основные математические понятия, что стало первым шагом практического применения математической логики к изучению основ математики. В своём пятитомном труде «Formulaire de Mathematiques» (1895—1905) Пеано показал, как с помощью символического исчисления можно аксиоматически построить математические дисциплины. Уайтхед и Рассел создают в 1910—1913 годах трактат Principia Mathematica. Этот труд значительно способствовал развитию математической логики по пути дальнейшей аксиоматизации и формализации исчисления высказываний, классов и предикатов. Б. Рассел и А. Уайтхед выход из кризиса, в котором оказалась математика в связи с обнаружением парадоксов в теории множеств, видели в том, чтобы свести всю чистую математику к логике. Это была концепция логицизма. С этой целью они построили формализованную логико-математическую систему, в которой, по их утверждению, могут быть доказаны все содержательно истинные предложения. Но вскоре стало понятно, что попытка Б. Рассела и А. Уайтхеда свести всю чистую математику к логике не увенчалась успехом. В 1930—1931 годах К. Гёдель установил, что не только разработанная Б. Расселом и А. Уайтхедом система, но и любая система формализованной математики является неполной, то есть не все содержательно истинные предложения могут быть в ней доказаны. В 1938 г. – американский математик и инженер Клод Шеннон связал Булеву алгебру (аппарат математической логики), двоичную систему кодирования и релейно-контактные переключательные схемы, заложив основы будущих ЭВМ. В конце 1880-х годов Пеано с помощью изобретённого им символического исчисления попытался исследовать основные математические понятия, что стало первым шагом практического применения математической логики к изучению основ математики. Большую роль в развитии математической логики сыграла работа Гильберта и В. Аккермана «Основные черты теоретической логики» (1928 г.), изданная в России на русском языке под названием «Основы теоретической логики» в 1947 году, в которой была создана программа обоснования математики посредством аксиоматической формализации с использованием строго ограниченных средств, не приводящих к противоречиям. В своей работе они высказались о новом в математической логике: «Логические связи, которые существуют между суждениями, понятиями и т. д. — писали они, — находят своё выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении. Переход к логическим следствиям, совершающийся посредством умозаключения, разлагается на свои последние элементы и представляется как формальное преобразование исходных формул по известным правилам, которые аналогичны правилам счёта в алгебре; логическое мышление отображается в логическом исчислении. Это исчисление делает возможным успешный охват проблем, перед которыми принципиально бессильно чисто содержательное логическое мышление». Гильберт выступал против интуиционизма. Он возражал против того, что интуиционисты отрицали закон исключённого третьего в операциях с множествами. «Запрещение теорем существования и закона исключённого третьего — писал он, — равносильно полному отказу от математической науки». В своём методе формализации Гильберт предложил превратить всю математику в совокупность формул, в которых элементы связаны с помощью логических знаков. В тридцатых и сороковых годах ХХ века начинается разработка металогики, предметом которой является исследование системы положений и понятий самой математической логики, которая определяет границы этой логики, изучает теорию доказательства. Основными разделами металогики являются логический синтез и логическая семантика, изучение значений выражения языка, интерпретаций логических исчислений. В металогических исследованиях уделяется анализу различных свойств формализованных языков, которые в дальнейшем легли в основу электронных машин для автоматизации научных умозаключений. В области логической семантики самыми значительными признаны работы А. Тарского «О понятии истины и формализованных языках» 1933 года, а также работы Р. Карнапа «Исследования по семантике» 1942—1947 года. Также важное значение в развитии математической логики имели работы в области многозначных логик, в которых высказываниям приписывается любое конечное или бесконечное множество значений истинности. Первую такую систему трёхзначной логики высказываний разработал и предложил Я. Лукасевич. В 1954 году Я. Лукасевич предложил четырёхзначную систему логики, и далее бесконечнозначную логику. Проблемами многозначной логики занимались также такие известные математики и логики как Э. Пост, С. Яськовский, Д. Вебб, А. Гейтинг, А. Н. Колмогоров, Д. А. Бочвар, В. И. Шестаков, Х. Рейхенбах, С. К. Клини и другие. Одним из крупнейших направлений в математической логике стала теория математических доказательств, которая возникла из применения логических исчислений к вопросам оснований математики. Она вышла из алгебры логики девятнадцатого века, предметом изучения которой были конечные объекты. 1938 г. – американский математик и инженер Клод Шеннон связал Булеву алгебру (аппарат математической логики), двоичную систему кодирования и релейно-контактные переключательные схемы, заложив основы будущих ЭВМ. Развитие математики на протяжении XIX в. характеризовалось стремлением к систематизации, к установлению единства в многообразии математических фактов и методов, на первый взгляд весьма далеких друг от друга. Ценным было также критическое уяснение и строгое обоснование фундаментальных понятий. Был создан богатый логический аппарат, с помощью которого создавался формальный язык математики, повышалась строгость доказательств. Необходимость математической строгости привела к математической логике. Математическая логика выросла из философских вопросов относительно оснований математики, но в настоящее время переросла свои философские корни и стала неотъемлемой частью математики в целом. 3.Что исследует и что не исследует логика? Во-первых, логика не исследует, что такое мышление. Она не исследует пути постижения истины. Она не исследует, что такое истина. Математическая логика не исследует, является ли конкретное, атомарное элементарное утверждение истинным или ложным. Математическая логика изучает формальные схемы рассуждений, то есть логические формулы и методы правильного структурирования рассуждений, изучает способы формального представления знаний, правила построения обоснованных доказательств, методы преобразования и анализа логических формул. Логика также исследует алгоритмы получения следствий из имеющихся фактов. Очевидно, что математическая логика необходима каждому инженеру, который работает с информацией. Математическая логика возникла много веков назад, и возникла она из внутренних потребностей математики. Классическое направление логики — это основание математики, а именно способы математических доказательств, анализ математических теорий с точки зрения их полноты и непротиворечивости. Именно в этом аспекте математическая логика преподается будущим математикам в классических университетах. Но значение математической логики намного шире: во-первых, каждый образованный человек должен уметь выражать свои мысли, строить правильные умозаключения, должен уметь делать правильные, разумные выводы из имеющихся фактов. Изучение логики позволяет отличить правильные схемы умозаключений от неправильных. В последние десятилетия математическая логика превратилась из абстрактной науки, изучающей основания математики, в индустриальную науку, которая позволяет решить множество инженерных проблем. Поскольку каждый современный инженер работает с информацией и информационными технологиями, то можно заключить, что знание математической логики необходимо каждому современному инженеру. 4.Взаимодействие математической логики и лингвистики Когда во второй половине 50-х годов некоторые молодые лингвисты задумались о применении математических методов для исследования структуры языка и начали сотрудничать с математиками, это вызвало у очень многих их коллег удивление и даже шок - ведь они с детства были убеждены, что гуманитарные науки, одной из которых является лингвистика, с математикой и другими «точными» науками не имеют и не могут иметь ничего общего. Между тем наличие тесной связи между естественным языком и математикой вовсе не было в то время новым открытием. Л.С. Выготский писал в опубликованной в 1934 году книге «Мышление и речь»: «Первым, кто увидел в математике мышление, происходящее из языка, но преодолевающее его, был, по-видимому, Декарт» и продолжал: «Наш обычный разговорный язык из-за присущих ему колебаний и несоответствий грамматического и психологического находится в состоянии подвижного равновесия между идеалами математической и фантастической гармонии и в непрестанном движении, которое мы называем эволюцией». Возникшее в Древней Греции учение о грамматических категориях уже представляло собой описание ряда важнейших аспектов строения языка с помощью абстрактных моделей, близких по стилю к тем моделям, которые были созданы древнегреческими математиками для описания пространственных форм; только привычность таких понятий, как падеж, род и т.п., ставших, как писал Х. Штейнталь, «нашей второй натурой», мешает нам понять, какого высокого уровня абстрактного мышления потребовало их создание. Так что удивляться следовало бы скорее тому, что первые попытки использовать для описания языкового «идеала математической гармонии» настоящие математические средства были предприняты лишь в середине ХХ столетия. Можно указать две причины такого «запоздания». Во-первых, наука о языке после значительных шагов, сделанных в античную эпоху, снова начала по-настоящему развиваться только в XIX столетии, но в течение всего этого столетия главное внимание лингвистов было обращено на историю языка, и лишь в следующем веке, который вообще был для гуманитарных наук веком структурализма, лингвистика впервые после античного периода обратилась к изучению языковых структур, но уже на новом уровне. Когда лингвисты осознали, что язык представляет собой, говоря словами Ф. де Соссюра, «систему чистых отношений», т.е. систему знаков, физическая природа которых несущественна, а существенны только отношения между ними, стала совершенно очевидна параллель между языком и математическими конструкциями, которые тоже являются «системами чистых отношений», и уже в начале ХХ столетия тот же де Соссюр мечтал об исследовании языка математическими средствами. Во-вторых, в математике в начале Нового времени вышли на первый план количественные методы, и только в XIX веке математики снова начали строить неколичественные абстрактные модели, отличавшиеся от античных более высоким уровнем абстракции, а также - что для нашей темы особенно важно - тем, что они могли использоваться для описания значительно более широкого круга явлений, чем пространственные формы; нередко такие модели оказывались удобным и даже необходимым средством для изучения явлений, о которых строившие их математики вовсе не думали и даже не знали об их существовании. Среди этих моделей были и те, которые впоследствии получили применение в лингвистике; особенно интенсивное развитие математических дисциплин, содержанием которых было их построение, пришлось на первую половину ХХ столетия. Поэтому встреча математики и лингвистики в середине этого столетия была вполне закономерна. Одним из результатов этой встречи было возникновение новой математической дисциплин - математической лингвистики, предметом которой является разработка математического аппарата для лингвистических исследований. Центральное место в математической лингвистике занимает теория формальных грамматик, по характеру используемого в ней аппарата родственная математической логике и в особенности теории алгоритмов. Она доставляет формальные методы описания правильных языковых единиц различных уровней, а также, что особенно важно, формальные методы описания преобразований языковых единиц - как на одном уровне, так и межуровневых. К теории формальных грамматик примыкает теория синтаксических структур, значительно более простая в отношении аппарата, но не менее важная для лингвистических приложений. В математической лингвистике разрабатываются также аналитические модели языка, в которых на основе тех или иных - считающихся известными - данных о «правильных текстах» производятся формальные построения, результатом которых является описание каких-то «составных частей» механизма языка. На этом пути можно получить формальное описание некоторых традиционных грамматических понятий. Сюда же следует отнести описание смысла предложения с помощью аппарата интенсиональной логики («семантику Монтегю»). Разумеется, с помощью математического аппарата можно описать только один из двух идеалов языка, о которых говорил Выготский; поэтому часто раздающиеся возражения против использования той или иной математической модели (или математических моделей вообще) на том основании, что такие-то и такие-то частные случаи она не охватывает, не имеют смысла: для описания присущих языку «колебаний и несоответствий» нужны совсем другие, не математические средства, и как раз четкое описание «математического идеала» могло бы помочь их находить, поскольку оно позволило бы ясно отграничивать в языке «фантастическое» от «математического». Но это пока что дело будущего. Не меньшее, а может быть и большее значение, чем возникновение математической лингвистики, имело непосредственное проникновение в лингвистику фундаментальных математических идей и понятий - таких, как множество, функция, изоморфизм. В современной лингвистической семантике важную роль играют пришедшие из математической логики понятия предиката и квантора. (Первое из них возникло в логике еще тогда, когда она не отграничивалась от лингвистики, и теперь вернулось в лингвистику в обобщенном и математически обработанном виде.) И, наконец, очень большое значение имеет уточнение языка лингвистических исследований, происходящее благодаря проникновению в лингвистику «математического духа» не только в тех ее областях, где возможно использование математических идей и методов. Все это можно коротко резюмировать так: лингвистика становится все более точной и более объективной наукой - не переставая, само собой, быть наукой гуманитарной. Однако на этом естественном пути развития лингвистики стоят серьезные препятствия, которые могут его надолго затормозить. Главное из них - возникшее в начале Нового времени «разделение факультетов»: естествоиспытатели и математики с одной стороны и гуманитарные ученые с другой не интересуются работой коллег «на другом факультете» и, более того, - в глубине души, а нередко и открыто презирают их. Математики и естествоиспытатели (и еще больше «технари») склонны видеть в гуманитарных исследованиях всего лишь некое «украшение» или даже «пустую болтовню», а «гуманитарии» готовы терпеть математику и естественные науки лишь ради практической пользы и убеждены, что они ничем не могут помочь постижению природы человеческого духа. Только в середине XIX столетия в этой, говоря словами великого биолога и великого мыслителя Конрада Лоренца, «зловредной стене между естественными и гуманитарными наукам (die bose Mauer zwischen Natur - und Geistwissenschaften)» была пробита первая брешь в самом тонком месте, отделявшем логику от математики. 5.Применение математической логики Логика оказала влияние на развитие математики, прежде всего теории множеств, функциональных систем, алгоритмов, рекурсивных функций, в гуманитарных науках (логика, криминалистика). Математическая логика является средством для изучения деятельности мозга - для решения этой самой важной проблемы биологии и науки вообще. Идеи и аппарат логики используется в программировании, базах данных и экспертных системах. Идеи и аппарат логики используется в кибернетике, ВТ и электротехнике (построены компьютеры на основе законов математической логики). Математическая логика применяется в: —Гуманитарные науках —Изучении деятельности мозга —Кибернетике, ВТ и электронике (компьютеры построены на основе законов математической логики) —Программировании Удивительно, но законы логики применимы в любой области человеческой деятельности. В обычной жизни часто встречаются люди с нелогичным мышлением, зачастую даже публичные люди не умеют говорить по существу. Их рассуждения не упорядочены, противоречивы. Игнорирование логики ведет у таких людей к суетливости мысли, к многословию, непоследовательности, расплывчатости их рассуждений. Их доказательства сумбурны, громоздки. Выводы таких рассуждений не следуют с необходимостью из исходных положений. Объединение математико-логической установки с иными математическими подходами, прежде всего с вероятностно-статистическими идеями и методами - на фоне глубокого интереса к вычислительным приборам, - было во многом определяющим в формировании замысла кибернетики, как комплексного научного направления, имеющего своим предметом процессы. В ряде случаев используется технический аппарат математической логики (синтез релейно-контактных схем); сверх того, что особенно важно, идеи математической логики это, конечно же, в теории алгоритмов, но также и всей науки в целом и свойственный ей стиль мышления оказали и продолжают оказывать очень большое влияние на те своеобразные области деятельности, содержанием которых является автоматическая переработка информации (информатика), использование в криптографии и автоматизация процессов управления (кибернетика). Строительство логических машин – интересная глава истории логики и кибернетики. В ней запечатлены первые проекты создания искусственного разума и первые споры о возможности этого. Идея логических машин появилась в 13 веке у испанского схоластика Раймунда Луллия, рассматривалась затем Лейбницем и получило новое развитие в 19 веке, после возникновения математической логики. В 1870 году английский философ и экономист Вильям Стэнли Джевонс построил в Манчестере “логическое пианино”, которое извлекало из алгебраически записанных посылок следствия, выделяя допустимые комбинации терминов. Это называют также разложением высказываний на конституанты. Важно отметить возможность практического применения логической машины для решения сложных логических задач. Современные универсальные вычислительные машины являются вместе с тем логическими машинами. Именно введение логических операций сделало их такими гибкими; оно же позволяет им моделировать рассуждения. Таким образом, арифметическая ветвь “разумных автоматов” соединились с логической. В 20-е годы, однако, формальная логика представлялась слишком абстрактной о метафизической для приложения к жизни. Между тем уже тогда можно было предвидеть внедрение логических исчислений в технику. Математическая логика облегчает механизацию умственного труда. Нынешние машины выполняют гораздо более сложные логические операции, нежели их скромные прототипы начала века. Проблема искусственного разума сложна и многогранна. Вероятно, не ошибёмся, если скажем, что окончательные границы механизации мысли можно установить лишь экспериментальным путём. Заметим ещё, что в современной кибернетики обсуждается возможность моделирования не только формальных, но и содержательных мыслительных процессов. 6.Математическая логика в технике Роль логической обработки бинарных данных на современном этапе развития вычислительной техники существенно возросла. Это связано, в первую очередь, с созданием технически систем. реализующих в том или ином виде технологии получения и накопления знаний, моделированием отдельных интеллектуальных функций человека. Ядром таких систем являются мощные ЭВМ и вычислительные комплексы. Кроме того, существует большой класс прикладных задач, которые можно свести к решению логических задач, например, обработка и синтез изображений, транспортные задачи. Требуемая производительность вычислительных средств достигается путем распараллеливания и конвейеризации вычислительных процессов. Это реализуется, как правило, на основе сверхбольших интегральных, схем (СБИС). Однако технология СБИС и их структура предъявляет ряд специфических требований к алгоритмам, а именно: регулярность, параллельно - поточная организация вычислений, сверхлинейная операционная сложность (многократное использование каждого элемента входных данных), локальность связей вычислений, двумерность пространства реализации вычислений. Эти требования обусловливают необходимость решения проблемы эффективного “погружения” алгоритма в вычислительную среду, или, как еще принято говорить, - отображение алгоритма в архитектуру вычислительных средств. В настоящее время доказана ошибочность ранее широко распространенных взглядов, состоящих в том, что переход на параллельно -конвейерные архитектуры ЭВМ потребуют лишь небольшой модификации известных алгоритмов. Оказалось, что параллелилизм и конвейеризация вычислительных процессов требует разработки новых алгоритмов даже для тех задач, для которых существовали хорошо изученные и апробированные методы и алгоритмы решения, но ориентированные на последовательный принцип реализации. По прогнозам специалистов, в ближайшее десятилетие следует ожидать появления новых концепций построения вычислительных средств. Основанием для прогнозов являются результаты проводимых в настоящее время перспективных исследований, в частности, в области биочипов и органических переключающих элементов. Некоторые направления ставят своей целью создание схем в виде слоев органических молекул и пленок с высокоразвитой структурой. Это позволит, по мнению исследователей, “выращивать” компьютеры на основе генной инженерии и усилить аналогию между элементами технических систем и клетками мозга. Тем самым реальные очертания приобретают нейрокомпьютеры, которые имитируют интеллектуальные функции биологических объектов, в том числе человека. По-видимому, молекулярная электроника станет основой для создания ЭВМ шестого поколения. Все это объективно обусловливает интенсивные работы по методам синтезов алгоритмов обработки логических данных и их эффективному погружению в операционную среду бинарных элементов. Очевидно, что бинарные элементы и бинарные данные наиболее полно соответствуют друг другу в плане представления и обработки последних на таких элементах, если рассматривать их по отдельности. Действительно, положим, алгебра логики над числами (0,1) реализуется на бинарном элементе полном использовании его операционного ресурса. Другими словами, ставится вопрос об эффективности, а иногда вообще возможности реализации данного алгоритма на такой сети (структуре). В этом состоит суть погружения алгоритма в структуру. 7.Математическая логика в криптографии Криптография изучает методы пересылки сообщений в замаскированном виде, при которых только намеченные отправителем получатели могут удалить маскировку и прочитать сообщение. Общая схема защиты информации представлена на рисунке 2. Этап кодирования от ошибок основан на внесении в передаваемое сообщение избытка информации, достаточного для преодоления помех на линии связи. Например, допустим, передается последовательность символов типа “0” и “1”. При этом в сети связи с некоторой вероятностью могут происходить ошибки приема сигнала “0 “ вместо сигнала “1” или наоборот, тогда кодер на каждый символ ai сообщения передает пятью импульсами 00000, если ai -0 и наоборот. На приемном конце принимаемая последовательность импульсов разбивается по пять импульсов, называемая блоками. Если в принятом блоке содержится 2 и менее импульса 0, то принимается решение о том, что передавался символ ai-1. Таким образом, исходная вероятность ошибки будет значительно снижена. Более элегантные методы кодирования, которые при достаточной надежности позволяют вносить не такой большой избыток информации. Для выражения в информации требуется ввести некоторый алфавит, из которого будет состоять сообщение (конечные упорядоченные множества из этих символов). Обозначим через A – мощность выбранного алфавита. Будем также считать, что все множества информации или , что то же самое, множество всевозможных сообщений конечно. В качестве меры информации в сообщении данной длины можно взять log2 от числа всевозможных сообщений конечно. Тогда объем информации, падающий на один символ алфавита X=log2a. Далее имеем дело со словами длинной S, тогда всего таких слов будет N=AS (декартова S- степень алфавита), а следовательно, количество информации в слове Y=Log2N=Log2As=SX. Львиную долю криптоанализа составляют методы, построенные на вероятностном анализе криптограммы и предлагаемого исходного языка. Поскольку всякий обычный язык имеет избыток информации, причем неравномерно размешенных в словах , то буквы алфавита этого языка могут иметь устойчивые частные характеристики. Например, в английском языке – это часто повторяющая буква “e”, кроме того, частотными характеристиками могут быть буквосочетания и их комбинации. Общая схема криптосистемы с секретным ключом изображена на рисунке 3. Здесь Х – открытый текст, Y- шифр текста, K – ключ шифра, R – рандомизирующая последовательность. 8.Математическая логика в программировании Функция одного аргумента - это правило, ставящее соответствие любому значению, лежащему в области изменения этого аргумента (которая будет и областью определения этой функции), другую величину, лежащую в области значений функции. Понятие функции было перенесено в языки программирования. В языке программирования, как правило, предусмотрен ряд встроенных функций, например sin, cos, sqrt и т.д. Кроме того, программист имеет возможность определять свои собственные функции. Они могут работать не только с вещественными числами, но и с различными типами данных, включающими обычно integer (целое), real (вещественное), boolean (булевское), character (строковое). Они могут также работать со структурами. В языках Паскаль, Алгол=68 и ПЛ/1 имеются, например, типы records (записи), arrays (массивы), lists (списки), files of records (файлы, состоящие из записей), а значениями функций могут быть указатели этих структур. Все это согласовано с понятием области определения, вне которой функция не определена. В языках программирования эта область задана обычно указанием типа данных, который является некоторым множеством величин. Так, в Паскале компилятор должен следить за тем, чтобы никакая функция не применялась к величине неподходящего типа, которая могла бы выйти за пределы области определения функции. Функция многих аргументов. Теперь нужно обобщить определение, чтобы охватить функции многих аргументов. Для этого соберем n аргументов в упорядоченный набор, который будем рассматривать как один аргумент. Возьмем функцию вычитания diff(x.y). Трактуется ее как отображение пар <х,у> в целые числа. В виде множества упорядоченных пар ее можно записать следующим образом: diff = {<<5,3>, 2>. <<6,3>, 3>, <<4,5>, -1>...} Если бы вместо этого у нас была функция четырех аргументов h(x,y,z,w), то использовали бы отображение, определенное на четверках <x,y,z,w>. Этот прием используется и в программировании. Если необходимо уменьшить количество аргументов процедуры или функции (причем все они имеют один и тот же тип), то в Фортране можно записать эти значения в массив и передать в качестве параметра этот массив, а не отдельные значения. В более общем случае когда аргументам разрешается иметь различные типы, можно передать в качестве параметра запись и хранить значения в виде отдельных компонент этой записи. В действительности набор, состоящий из n элементов в математике соответствует записи в программировании. Каждая из ее компонент берется из своей отдельной области, как и в случае записи. Единственное отличие состоит в том, что компонента определяется своим расположением (позицией), а не именем. Реляционная модель данных работает с множествами упорядоченных наборов, которые соответствуют файлам записей, хранящимся в машине. Также математическая логика используется и в других областях информатики – это в разработке в области моделирования и автоматизации интеллектуальных процедур – направление так называемого искусственного интеллекта Список использованных источников 1.Википедия https://ru.wikipedia.org/wiki/Математическая_логика 2.Математическая логика и теория алгоритмов (В. М. Зюзьков) 3.Математическая логика в речи русского и английского языка https://knowledge.allbest.ru/mathematics/3c0a65625a2bc68b5c53b88521316d26_0.html#text 4.История развития математической логики https://knowledge.allbest.ru/mathematics/c-3c0b65625a3ad79b5d43a89421306d27.html |