Главная страница
Навигация по странице:

  • Решение

  • Приведение матричной игры к задаче линейного программирования


    Скачать 310.23 Kb.
    НазваниеПриведение матричной игры к задаче линейного программирования
    Дата08.01.2021
    Размер310.23 Kb.
    Формат файлаrtf
    Имя файла571882.rtf
    ТипРешение
    #166362

    ">http://www.allbest.ru/


    Тема: "Приведение матричной игры к задаче линейного программирования"

    Игра т х п в общем случае не имеет наглядной геометрической интерпретации. Ее решение достаточно трудоемко при больших т и п, однако принципиальных трудностей не имеет, поскольку может быть сведено к решению задачи линейного программирования. Покажем это.

    Пусть игра т х п задана платежной матрицей . Игрок А обладает стратегиями , игрок В стратегиями . Необходимо определить оптимальные стратегии и , где - вероятности применения соответствующих чистых стратегий ;

    игра линейный программирование матрица


    Оптимальная стратегия удовлетворяет следующему требованию. Она обеспечивает игроку А средний выигрыш, не меньший, чем цена игры v, при любой стратегии игрока В и выигрыш, равный цене игры v, при оптимальной стратегии игрока В. Без ограничения общности полагаем v > 0, этого можно добиться, сделав все элементы . Если игрок А применяет смешанную стратегию против любой чистой стратегии игрока В, то он получает средний выигрыш, или математическое ожидание выигрыша (т.е. элементы j-того столбца платежной матрицы почленно умножаются на соответствующие вероятности стратегий и результаты складываются).

    Для оптимальной стратегии все средние выигрыши не меньше цены игры v, поэтому получаем систему неравенств:
    (1)
    Каждое из неравенств можно разделить на число v > 0. Введем новые переменные:
    (2)
    Тогда система (1) примет вид:
    (3)
    Цель игрока А максимизировать свой гарантированный выигрыш, т.е. цену игры v. Разделив на равенство , получаем, что переменные удовлетворяют условию: . Максимизация цены игры v эквивалентна минимизации величины 1/v, поэтому задача может быть сформулирована следующим образом: определить значения переменных , , так, чтобы они удовлетворяли линейным ограничениям (3) и при этом линейная функция
    (4)
    обращалась в минимум. Это задача линейного программирования. Решая задачу (3)—(4), получаем оптимальное решение оптимальную стратегию .

    Для определения оптимальной стратегии следует учесть, что игрок В стремится минимизировать гарантированный выигрыш, т.е. найти . Переменные удовлетворяют неравенствам
    (5)
    которые следуют из того, что средний проигрыш игрока В не превосходит цены игры, какую бы чистую стратегию не применял игрок А.

    Если обозначить
    (6)
    то получим систему неравенств:
    (7)
    Переменные удовлетворяют условию

    Игра свелась к следующей задаче. Определить значения переменных , которые удовлетворяют системе неравенств (7) и максимизируют линейную функцию
    (8)
    Решение задачи линейного программирования (6), (7) определяет оптимальную стратегию . При этом цена игры

    Составив расширенные матрицы для задач (3), (4) и (7), (8), убеждаемся, что одна матрица получилась из другой транспонированием:



    Таким образом, задачи линейного программирования (3), ( 4) и (7), (8) являются взаимно-двойственными. Очевидно, при определении оптимальных стратегий в конкретных задачах следует выбрать ту из взаимно-двойственных задач, решение которой менее трудоемко, а решение другой задачи найти с помощью теорем двойственности.

    Приведем примеры экономических задач, которые описываются игровыми моделями и могут быть решены методами линейного программирования.

    Предприятие может выпускать три вида продукции , получая при этом прибыль, зависящую от спроса, который может быть в одном из четырех состояний ( ). Дана матрица ее элементы характеризуют прибыль, которую получит предприятие при выпуске i-той продукции с j-м состоянием спроса.

    Определить оптимальные пропорции в выпускаемой продукции, гарантирующие среднюю величину прибыли при любом состоянии спроса, считая его неопределенным.
    Таблица 1.














    3

    3

    6

    8



    9

    10

    4

    2



    7

    7

    5

    4


    Решение. Задача сводится к игровой модели, в которой игра предприятия А против спроса В задана платежной матрицей (втаблице). Прежде чем решать задачу, можно попытаться упростить игру, проведя анализ платежной матрицы и отбросив стратегии, заведомо невыгодные или дублирующие.

    Так, вторая стратегия (второй столбец матрицы) является явно невыгодной для игрока В по сравнению с первой (элементы второго столбца больше элементов первого столбца), так как цель игрока В уменьшить выигрыш игрока А. Поэтому второй столбец можно отбросить. Получим матрицу Р размера 3х3:

    Таблица.














    3

    6

    8

    3



    9

    4

    2

    2



    7

    5

    4

    4



    9

    6

    8

    4

    6


    Определим нижнюю и верхнюю цены игры в таблице. Так как , то седловая точка отсутствует и оптимальное решение следует искать в смешанных стратегиях игроков:
    и .
    Обозначив и составим две взаимно-двойственные задачи линейного программирования
    Задача 1 Задача 2






    Решаем симплексным методом одну из задач, например, задачу 2, поскольку для нее первое базисное решение будет допустимым. Введем добавочные переменные и перейдем к уравнениям:

    Оптимальное решение задачи 1: (2/27; 0;1/9; 1/2; 0; 17/27) причем Из соотношений (9) находим цену игры Оптимальную стратегию находим, используя:
    т.е.
    Следовательно, предприятие должно выпустить 40% продукции и 60% продукции , а продукцию не выпускать.

    Оптимальная стратегия спроса определяется аналогично:
    , т.е. = (0,2; 0; 0,8; 0)
    (здесь учтено, что второй столбец исходной матрицы был отброшен как невыгодный). Таким образом, оптимальный спрос в 20% находится в состоянии и в 80% - в состоянии

    При решении произвольной конечной игры размера т х п рекомендуется придерживаться следующей схемы:

    1. Исключить из платежной матрицы заведомо невыгодные стратегии по сравнению с другими стратегиями. Такими стратегиями для игрока А (игрока В) являются те, которым соответствуют строки (столбцы) с элементами, заведомо меньшими (большими) по сравнению с элементами других строк (столбцов).

    2. Определить верхнюю и нижнюю цены игры и проверить, имеет ли игра седловую точку. Если седловая точка есть, то соответствующие ей стратегии игроков будут оптимальными, а цена совпадает с верхней (нижней) ценой.

    3. Если седловая точка отсутствует, то решение следует искать в смешанных стратегиях. Для игр размера т х п рекомендуется симплексный метод, для игр размера 2 х2, 2 х n, n х 2 возможно геометрическое решение.

    На практике реализация оптимального решения в смешанных стратегиях может происходить несколькими путями. Первый состоит в физическом смешении чистых стратегий в пропорциях, заданных вероятностями .

    Другой путь - при многократном повторении игры - в каждой партии чистые стратегии применяются в виде случайной последовательности, причем каждая из них — с частотой, равной ее вероятности в оптимальном решении.


    написать администратору сайта