Приведение матричной игры к задаче линейного программирования
Скачать 310.23 Kb.
|
">http://www.allbest.ru/ Тема: "Приведение матричной игры к задаче линейного программирования" Игра т х п в общем случае не имеет наглядной геометрической интерпретации. Ее решение достаточно трудоемко при больших т и п, однако принципиальных трудностей не имеет, поскольку может быть сведено к решению задачи линейного программирования. Покажем это. Пусть игра т х п задана платежной матрицей . Игрок А обладает стратегиями , игрок В — стратегиями . Необходимо определить оптимальные стратегии и , где - вероятности применения соответствующих чистых стратегий ; игра линейный программирование матрица Оптимальная стратегия удовлетворяет следующему требованию. Она обеспечивает игроку А средний выигрыш, не меньший, чем цена игры v, при любой стратегии игрока В и выигрыш, равный цене игры v, при оптимальной стратегии игрока В. Без ограничения общности полагаем v > 0, этого можно добиться, сделав все элементы . Если игрок А применяет смешанную стратегию против любой чистой стратегии игрока В, то он получает средний выигрыш, или математическое ожидание выигрыша (т.е. элементы j-того столбца платежной матрицы почленно умножаются на соответствующие вероятности стратегий и результаты складываются). Для оптимальной стратегии все средние выигрыши не меньше цены игры v, поэтому получаем систему неравенств: (1) Каждое из неравенств можно разделить на число v > 0. Введем новые переменные: (2) Тогда система (1) примет вид: (3) Цель игрока А — максимизировать свой гарантированный выигрыш, т.е. цену игры v. Разделив на равенство , получаем, что переменные удовлетворяют условию: . Максимизация цены игры v эквивалентна минимизации величины 1/v, поэтому задача может быть сформулирована следующим образом: определить значения переменных , , так, чтобы они удовлетворяли линейным ограничениям (3) и при этом линейная функция (4) обращалась в минимум. Это задача линейного программирования. Решая задачу (3)—(4), получаем оптимальное решение оптимальную стратегию . Для определения оптимальной стратегии следует учесть, что игрок В стремится минимизировать гарантированный выигрыш, т.е. найти . Переменные удовлетворяют неравенствам (5) которые следуют из того, что средний проигрыш игрока В не превосходит цены игры, какую бы чистую стратегию не применял игрок А. Если обозначить (6) то получим систему неравенств: (7) Переменные удовлетворяют условию Игра свелась к следующей задаче. Определить значения переменных , которые удовлетворяют системе неравенств (7) и максимизируют линейную функцию (8) Решение задачи линейного программирования (6), (7) определяет оптимальную стратегию . При этом цена игры Составив расширенные матрицы для задач (3), (4) и (7), (8), убеждаемся, что одна матрица получилась из другой транспонированием: Таким образом, задачи линейного программирования (3), ( 4) и (7), (8) являются взаимно-двойственными. Очевидно, при определении оптимальных стратегий в конкретных задачах следует выбрать ту из взаимно-двойственных задач, решение которой менее трудоемко, а решение другой задачи найти с помощью теорем двойственности. Приведем примеры экономических задач, которые описываются игровыми моделями и могут быть решены методами линейного программирования. Предприятие может выпускать три вида продукции , получая при этом прибыль, зависящую от спроса, который может быть в одном из четырех состояний ( ). Дана матрица ее элементы характеризуют прибыль, которую получит предприятие при выпуске i-той продукции с j-м состоянием спроса. Определить оптимальные пропорции в выпускаемой продукции, гарантирующие среднюю величину прибыли при любом состоянии спроса, считая его неопределенным. Таблица 1.
Решение. Задача сводится к игровой модели, в которой игра предприятия А против спроса В задана платежной матрицей (втаблице). Прежде чем решать задачу, можно попытаться упростить игру, проведя анализ платежной матрицы и отбросив стратегии, заведомо невыгодные или дублирующие. Так, вторая стратегия (второй столбец матрицы) является явно невыгодной для игрока В по сравнению с первой (элементы второго столбца больше элементов первого столбца), так как цель игрока В — уменьшить выигрыш игрока А. Поэтому второй столбец можно отбросить. Получим матрицу Р размера 3х3: Таблица.
Определим нижнюю и верхнюю цены игры в таблице. Так как , то седловая точка отсутствует и оптимальное решение следует искать в смешанных стратегиях игроков: и . Обозначив и составим две взаимно-двойственные задачи линейного программирования Задача 1 Задача 2 Решаем симплексным методом одну из задач, например, задачу 2, поскольку для нее первое базисное решение будет допустимым. Введем добавочные переменные и перейдем к уравнениям: Оптимальное решение задачи 1: (2/27; 0;1/9; 1/2; 0; 17/27) причем Из соотношений (9) находим цену игры Оптимальную стратегию находим, используя: т.е. Следовательно, предприятие должно выпустить 40% продукции и 60% продукции , а продукцию не выпускать. Оптимальная стратегия спроса определяется аналогично: , т.е. = (0,2; 0; 0,8; 0) (здесь учтено, что второй столбец исходной матрицы был отброшен как невыгодный). Таким образом, оптимальный спрос в 20% находится в состоянии и в 80% - в состоянии При решении произвольной конечной игры размера т х п рекомендуется придерживаться следующей схемы: 1. Исключить из платежной матрицы заведомо невыгодные стратегии по сравнению с другими стратегиями. Такими стратегиями для игрока А (игрока В) являются те, которым соответствуют строки (столбцы) с элементами, заведомо меньшими (большими) по сравнению с элементами других строк (столбцов). 2. Определить верхнюю и нижнюю цены игры и проверить, имеет ли игра седловую точку. Если седловая точка есть, то соответствующие ей стратегии игроков будут оптимальными, а цена совпадает с верхней (нижней) ценой. 3. Если седловая точка отсутствует, то решение следует искать в смешанных стратегиях. Для игр размера т х п рекомендуется симплексный метод, для игр размера 2 х2, 2 х n, n х 2 возможно геометрическое решение. На практике реализация оптимального решения в смешанных стратегиях может происходить несколькими путями. Первый состоит в физическом смешении чистых стратегий в пропорциях, заданных вероятностями . Другой путь - при многократном повторении игры - в каждой партии чистые стратегии применяются в виде случайной последовательности, причем каждая из них — с частотой, равной ее вероятности в оптимальном решении. |