ааааа. В 1989 году была сделана очередная попытка расширить классификац. Процессор команд
Скачать 42.79 Kb.
|
В 1989 году была сделана очередная попытка расширить классификацию Флинна и, тем самым, преодолеть ее недостатки. Д.Скилликорн разработал подход, пригодный для описания свойств многопроцессорных систем и некоторых нетрадиционных архитектур, в частности dataflow и reduction machine. Предлагается рассматривать архитектуру любого компьютера, как абстрактную структуру, состоящую из четырех компонентов: процессор команд(IP - Instruction Processor) - функциональное устройство, работающее, как интерпретатор команд; в системе, вообще говоря, может отсутствовать; процессор данных(DP - Data Processor) - функциональное устройство, работающее как преобразователь данных, в соответствии с арифметическими операциями; иерархия памяти(IM - Instruction Memory, DM - Data Memory) - запоминающее устройство, в котором хранятся данные и команды, пересылаемые между процессорами; переключатель- абстрактное устройство, обеспечивающее связь между процессорами и памятью. Функции процессора команд во многом схожи с функциями устройств управления последовательных машин и, согласно Д.Скилликорну, сводятся к следующим: на основе своего состояния и полученной от DP информации IP определяет адрес команды, которая будет выполняться следующей; осуществляет доступ к IM для выборки команды; получает и декодирует выбранную команду; сообщает DP команду, которую надо выполнить; определяет адреса операндов и посылает их в DP; получает от DP информацию о результате выполнения команды. Функции процессора данных делают его , во многом, похожим на арифметическое устройство традиционных процессоров: DP получает от IP команду, которую надо выполнить; получает от IP адреса операндов; выбирает операнды из DM; выполняет команду; запоминает результат в DM; возвращает в IP информацию о состоянии после выполнения команды. В терминах таким образом определенных основных частей компьютера структуру традиционной фон-неймановской архитектуры можно представить в следующем виде: Это один из самых простых видов архитектуры, не содержащих переключателей. Для описания параллельных вычислительных систем автор зафиксировал четыре типа переключателей, без какой-либо явной связи с типом устройств, которые они соединяют: - переключатель такого типа связывает пару функциональных устройств; n-n - переключатель связывает i-е устройство из одного множества устройств с i-м устройством из другого множества, т.е. фиксирует попарную связь; 1-n - переключатель соединяет одно выделенное устройство со всеми функциональными устройствами из некоторого набора; nxn - каждое функциональное устройство одного множества может быть связано с любым устройством другого множества, и наоборот. Примеров подобных переключателей можно привести очень много. Так, все матричные процессоры имеют переключатель типа 1-n для связи единственного процессора команд со всеми процессорами данных. В компьютерах семейства Connection Machine каждый процессор данных имеет свою локальную память, следовательно, связь будет описываться как n-n. В тоже время, каждый процессор команд может связаться с любым другим процессором, поэтому данная связь будет описана как nxn. Классификация Д.Скилликорна состоит из двух уровней. На первом уровне она проводится на основе восьми характеристик: количество процессоров команд (IP); число запоминающих устройств (модулей памяти) команд (IM); тип переключателя между IP и IM; количество процессоров данных (DP); число запоминающих устройств (модулей памяти) данных (DM); тип переключателя между DP и DM; тип переключателя между IP и DP; тип переключателя между DP и DP. Рассмотрим упомянутый выше компьютер Connection Machine 2. В терминах данных характеристик его можно описать: (1, 1, 1-1, n, n, n-n, 1-n, nxn), а условное изображение архитектуры приведено на следующем рисунке: Для сильно связанных мультипроцессоров (BBN Butterfly, C.mmp) ситуация иная. Такие системы состоят из множества процессоров, соединенных с модулями памяти с помощью динамического переключателя. Задержка при доступе любого процессора к любому модулю памяти примерно одинакова. Связь и синхронизация между процессорами осуществляется через общие (разделяемые) переменные. Описание таких машин в рамках данной классификации выглядит так: (n, n, n-n, n, n, nxn, n-n, нет), а саму архитектуру можно изобразить так, как на следующем рисунке: Используя введенные характеристики и предполагая, что рассмотрение количественных характеристик можно ограничить только тремя возможными вариантами значений: 0, 1 и n (т.е. больше одного), можно получить 28 классов архитектур. В классах 1-5 находятся компьютеры типа dataflow и reduction, не имеющие процессоров команд в обычном понимании этого слова. Класс 6 это классическая фон-неймановская последовательная машина. Все разновидности матричных процессоров содержатся в классах 7-10. Классы 11 и 12 отвечают компьютерам типа MISD классификации Флинна и на настоящий момент, по мнению автора, пусты. Классы с 13-го по 28-й занимают всесозможные варианты мультипроцессоров, причем в 13-20 классах находятся машины с достаточно привычной архитектурой, в то время, как архитектура классов 21-28 пока выглядит экзотично. На втором уровне классификации Д.Скилликорн просто уточняет описание, сделанное на первом уровне, добавляя возможность конвейерной обработки в процессорах команд и данных. В конце данного описания имеет смысл привести сформулированные автором три цели, которым должна служить хорошо построенная классификация: облегчать понимание того, что достигнуто на сегодняшний день в области архитектур вычислительных систем, и какие архитектуры имеют лучшие перспективы в будущем; подсказывать новые пути организации архитектур - речь идет о тех классах, которые в настоящее время по разным причинам пусты; показывать, за счет каких структурных особенностей достигается увеличение производительности различных вычислительных систем; с этой точки зрения, классификация может служить моделью для анализа производительности. |