Главная страница

Выпарной аппарат. Проектирование выпарной установки для концентрированного водного раствора хлорида аммония, производительностью 22 кгс по концентрированному раствору


Скачать 7.18 Mb.
НазваниеПроектирование выпарной установки для концентрированного водного раствора хлорида аммония, производительностью 22 кгс по концентрированному раствору
Дата08.09.2022
Размер7.18 Mb.
Формат файлаrtf
Имя файлаВыпарной аппарат.rtf
ТипКурсовая
#667396
страница4 из 6
1   2   3   4   5   6

Таблица 3.2 - Температурный режим работы выпарной установки


Узловые точки технологической схемы

Температура,



Давление,



Барометрический конденсатор



90



0.715

Паровое пространство аппарата



91



0.740

Выход кипящего раствора в сепаратор



98.57



в сепараторе

0.740

Трубное пространство (середина высоты труб)



99.48



0.801

Межтрубное пространство греющей камеры



142,9



4,03

Вход исходного раствора в выпарной аппарат



92,0

-

-


3.3 Тепловой баланс выпарного аппарата
3.3.1 Расход теплоты на выпаривание

Тепловая нагрузка выпарного аппарата равна:
, (3.9)
где - расход теплоты на нагревание раствора, кВт; - расход теплоты на испарение влаги кВт; - теплота дегидратации. Обычно, эта величина мала по сравнению с другими статьями теплового баланса и ею можно пренебречь; - расход теплоты на компенсацию потерь в окружающую среду.

Расход теплоты на нагревание раствора , определяется по формуле:
, (3.10)
где - теплоемкость разбавленного раствора, определяется по формуле:
(3.11)
где , , , , - удельная теплоемкость воды, определяется по формуле:
(3.12)
где - температура воды,

.

Тогда по формуле 3.11 будет равна:

и по формуле 3.10 получим:

.

Расход теплоты на испарение определяется по формуле:
(3.13)
где - энтальпия вторичного пара, при температуре .

По (/1/, табл. LVI, стр. 548) находим :

.

Теплоемкость воды по формуле 3.12 при температуре будет равна:

,

тогда по формуле 3.13 находим расход теплоты на испарение:

.

Расход теплоты на компенсацию потерь в окружающую среду ,при расчете выпарных аппаратов принимают 3-5% от суммы . Таким образом, равняется:

.

Следовательно, количество теплоты, передаваемой от греющего пара к кипящему раствору, по формуле 3.9 равняется:

.
3.3.2 Определение расхода греющего пара

Расход греющего пара (в кг/с) в выпарном аппарате определяем по уравнению:
, (3.14)
где - паросодержание (степень сухости) греющего пара; - удельная теплота конденсации греющего пара, . Из (/1/, табл. LVII, стр. 550) находим для температуры ,

.

И получаем:

.

Удельный расход греющего пара:

3.4 Расчет греющей камеры выпарного аппарата
Выпарная установка работает при кипении раствора в трубах при оптимальном уровне. При расчете выпарного аппарата мы приняли высоту труб . При расчете установки мы приняли: тепловая нагрузка ; средняя температура кипения раствора хлорида аммония ; температура конденсации сухого насыщенного водяного пара . Для кипящего раствора коэффициент теплопроводности раствора NH4Cl мы рассчитываем по формуле:
, (3.15)
где , - коэффициент теплопроводности воды, :
, (3.16)
.

Тогда по формуле 2.15 получаем:



Средняя разность температур:


Находим коэффициент теплоотдачи от конденсирующегося водяного пара к поверхности вертикальных труб по формуле:
, (3.17)
где (/1/, табл. 4.6, стр. 162).

;

Следовательно,

.

Коэффициент теплоотдачи от стенки труб к кипящему раствору:
, (3.18)
где
, (3.19)
и - соответственно плотности раствора и его пара при средней температуре кипения , К; - динамический коэффициент вязкости, ; - поверхностное натяжение раствора, Н/м, при и .

Плотность раствора, рассчитанная по формулам 3.6 и 3.7, равна:

;

.

Плотность пара находим по (/1/, табл. LVI, стр. 548):

.

Таким образом, по формуле 3.19 получаем:

.

Динамический коэффициент вязкости рассчитывается по формуле:
, (3.20)
где - температура раствора, , , , ; - вязкость воды, :
(3.21)
При средней температуре кипения раствора получаем:

.

.

Поверхностное натяжение берем по (/1/, табл. XXIII, стр. 526) для хлорида аммония 10% концентрации:

.

Подставляя найденные значения в формулу 3.18 получаем:



Принимаем тепловую проводимость загрязнений (/1/, табл. XXXI, стр. 531) стенки со стороны греющего пара и со стороны кипящего раствора . Коэффициент теплопроводности стали по (/1/, табл. XXVIII, стр. 529) принимаем равным:
,
по (/3/, табл. 2.2, стр. 16) толщину труб принимаем равной 2 мм. Тогда

.

Ввиду того, что и , для расчета коэффициента теплопередачи принимаем метод последовательных приближений.

Для определения исходного значения , учитывая: что при установившемся режиме теплопередачи , выражаем через :

.

Затем рассчитываем исходные значения и , принимая :

;

.

Находим значение
.
Составляем расчетную таблицу 3.3, в которую записываем исходные данные , , , и результаты последующих расчетов.

Таблица 3.3 Температурный режим работы выпарной установки

Прибли-жения и провероч-ный расчет

Конденсация греющего пара












I

142,9

139,9

3,0

7529

24770

II

142,9

137,31

5,59

6594

36863

III

142,9

136,06

6,85

6267

42934

IV

142,9

135.17

7.73

6081

47008

Прибли-жения и провероч-ный расчет

Стенка и ее загрязнения

Кипение раствора















I

1785

13,88

125,73

109,9

28,65

2532

72548

II

1785

20,65

116,66

109,9

19,58

3301

64628

III

1785

24,05

112,01

109,9

14,93

3654

54552

IV

1785

26.33

108.84

109,9

11.76

3881

45646




  1. Первое приближение:


;

;

;

;

;

;

; .
В первом приближении: .

II. Второе приближение.

Рассчитываем по первому приближению :

,

тогда

.

Величину определяем, принимая при
:
.

Затем выполняем аналогичный расчет (см. строку II в табл. 3.3).

Расхождение и по второму расчету:

.

III. Третье приближение.

Рассчитываем по второму приближению :

,

тогда

.

Величину определяем, принимая при :

.

Затем выполняем аналогичный расчет (см. строку III в табл. 3.3).

Расхождение и по третьему расчету: .

По результатам расчетов второго и третьего приближения строим график . Полагая что при малых изменениях температуры поверхностные плотности и линейно зависят от , графически определяем Графическая зависимость

IV. Проверочный расчет (см. табл. 3.3).

Расчеты аналогичны расчетам первого приближения.

Расхождение и :



По данным последнего приближения определяем коэффициент теплопередачи:

.

Площадь поверхности теплопередачи:

.

По (Таблице 2.2 стр. 16) принимаем аппарат Тип 1, Исполнение 2, группа А (С выносной греющей камерой и кипением в трубах), с площадью поверхности теплопередачи 132 (действительная), Трубы 38 х 2 мм, длинной Н = 4000 мм , т.е. с запасом .
3.5 Полный тепловой расчет подогревателя начального раствора
3.5.1 Ориентировочный расчет теплообменного аппарата для подогрева раствора перед подачей в выпарной аппарат

Таблица 3.4 - Основные данные для расчета подогревателя

Раствор хлорида аммония

Греющий пар

, % масс.









12

23

92,0

142,9

4,03
1   2   3   4   5   6


написать администратору сайта