Главная страница

Выпарной аппарат. Проектирование выпарной установки для концентрированного водного раствора хлорида аммония, производительностью 22 кгс по концентрированному раствору


Скачать 7.18 Mb.
НазваниеПроектирование выпарной установки для концентрированного водного раствора хлорида аммония, производительностью 22 кгс по концентрированному раствору
Дата08.09.2022
Размер7.18 Mb.
Формат файлаrtf
Имя файлаВыпарной аппарат.rtf
ТипКурсовая
#667396
страница6 из 6
1   2   3   4   5   6




  1. Второе приближение.

Принимаем . Результаты - табл 3.5 строка II.

Расхождение по второму приближению: .

По результатам расчетов первого и второго приближения строим график . Полагая что при малых изменениях температуры, поверхностные плотности и линейно зависят от , графически определяем (рис. 3.3, точка А). Графическая зависимость

  1. Проверочный расчет.

Расчеты аналогичны расчетам первого приближения (см. табл. 3.4, строку III).

Расхождение и :



Коэффициент теплопередачи равен:
.
Поверхность теплообмена:

Так как , то истинную поверхность теплообменника рассчитывают по формуле:
,
где - внутренний диаметр труб, - число труб, - длина труб.

.

Запас поверхности:

.

3.5.3 Выбор типа аппарата

Поверхностная плотность теплового потока:

,

Определение температуры внутренней поверхности труб :
;
.

Определение температуры наружной поверхности труб:
;

.
Средняя температура стенок труб:

.

Средняя разность:
.
Величина меньше 40 К (/1/, табл. 35, стр. 534), поэтому (/1/, стр. 213) принимаем кожухотрубчатый горизонтальный теплообменник с неподвижными трубными решетками типа ТН.
3.6 Расчет барометрического конденсатора
Расход охлаждающей воды определяют из теплового баланса конденсатора:
,
где - энтальпия паров в барометрическом конденсаторе, Дж/кг; - начальная температура охлаждающей воды, ; - конечная температура смеси воды и конденсата, ; - расход вторичного пара (см. табл. 1), кг/с; - теплоемкость воды, .

По (/1/, табл. LVI, стр. 548) находим, что при , . По заданию . Разность температур между паром и жидкостью на выходе из конденсатора должна быть 3-5 К, поэтому принимаем . Теплоемкость воды принимаем равной .

.

По расходу вторичного пара по (/3/, табл. 3.3, стр. 17) выбираем барометрический конденсатор смешения, диаметром , с диаметрои труб .

Высота трубы:
, (3.30)
где - высота водяного столба, соответствующая вакууму разряжения в конденсаторе и необходимая для уравновешивания атмосферного давления, м; - высота, отвечаемая напору, затрачиваемому на преодоление гидравлических сопротивлений в трубе и создания скоростного напора в барометрической трубе; 0,5 – запас высоты на возможное изменения барометрического давления, м.

;
,
- сумма коэффициентов местных сопротивлений; - коэффициент трения.

Принимаем (/4/, стр. 365).

Находим критерий Рейнольдса:
,
где - динамический коэффициент вязкости воды, при температуре ,

По формуле 3.21 получаем:

.

Принимаем скорость смеси воды и парового конденсата в пределах 0,5-1,0 м/с,

.

По (/1/, табл. XII, стр. 519) принимаем среднее значение шероховатости стенки трубы , тогда отношение .

По (/1/, рис. 1.5, стр. 22) находим, что при таких Re и коэффициент трения равняется .

Подставляя найденные значения в формулу 3.30 получаем:

,

откуда

7,585м.

Выбираем барометрический конденсатор диаметром , 2-у ходовый, с высотой труб 7,585м.
3.7 Расчет производительности вакуум – насоса
Производительность вакуум-насоса определяется количеством газа (воздуха), который необходимо удалять из барометрического конденсатора:
,
где - количество газа. Выделяющегося из 1 кг воды; 0,01- количество газа, подсасываемого в конденсатор через неплотности, на 1 кг паров. Тогда

.

Объемная производительность вакуум-насоса равна:
,
где - универсальная газовая постоянная R = 8,314 ; - молекулярная масса воздуха M = 29 кг/кмоль; - температура воздуха, ; - парциальное давление сухого воздуха в барометрическом конденсаторе, Па.

Температуру воздуха рассчитывают по уравнению:

.

Давление воздуха равно:

,
где - давление сухого насыщенного пара (Па) при .

По (/1/, табл. LVI, стр. 548) . Подставив, получим:

;

.

Зная объемную производительность и остаточное давление по (/3/, табл. 2.5, стр. 19) выбираем вакуум-насос типа ВВН1-3 мощностью на валу 4,95 кВт.
3.8 Приближенный расчет холодильника
Таблица 3.6

Основные данные для расчета холодильника

Раствор хлорида аммония

Вода

, % масс.









25

93,55

35,0

18,0

30,0


Значение усредненной по всей теплообменной поверхности разности температур рассчитывается по формуле:
;
при этом
,
где

;

;

;

;

.

Получаем

.

Средняя температура раствора:

,

где

;

.

Расход раствора:

.

Количество теплоты, которое необходимо забрать у раствора:
,
где - удельная теплоемкость раствора, рассчитанная по формуле 3.11 при и % масс.

По формуле 3.12 удельная температура воды при равна:

.

Тогда по формуле 3.11:

, получаем:


.

Расход воды:
,
где - теплоемкость воды при средней температуре . По формуле 3.12 находим:

.

Тогда

.

Принимая по (/1/, табл. 4.8 стр. 172) ориентировочный коэффициент теплопередачи , рассчитываем ориентировочную поверхность теплопередачи:

.

Проходное сечение трубного пространства рассчитываем по формуле 3.24, где - внутренний диаметр труб; - динамический коэффициент вязкости начального раствора при средней температуре ; Re – критерий Рейнольдса.

По формуле 3.21 при для воды получаем:

,

а по формуле 3.20:
,
для раствора находим:

,



Для обеспечения интенсивного теплообмена подбираем аппарат с турбулентным режимом течения теплоносителей. Раствор направляется в трубное пространство, греющий пар – в межтрубное.

Максимальное проходное сечение по трубам считаем при критерии Рейнольдса :
,
минимальное – при :
.
Проходное сечение межтрубного пространства рассчитываем по формуле:
,
где - наружный диаметр труб; - динамический коэффициент вязкости воды при средней температуре ; Re – критерий Рейнольдса.

По формуле 3.21 получаем:



Максимальное проходное сечение межтрубного пространства считаем при критерии Рейнольдса :

.

Минимальное проходное сечение межтрубного пространства считаем при критерии Рейнольдса :

.

Полученное оценочное значение поверхности теплопередачи с учетом и позволяет сделать вывод о том, что в качестве холодильника может быть использован кожухотрубчатый двухходовой теплообменник с внутренним диаметром кожуха , числом труб , поверхностью теплообмена , длиной труб , проходным сечением трубного пространства , проходным сечением межтрубного пространства и числом рядов труб .
3.9 Определение расходов греющего пара и воды на всю установку
Расход греющего пара:
,
где - расход пара на подогрев раствора, - расход пара на выпаривание.



Расход воды:

,
где - расход воды в барометрическом конденсаторе, - расход воды в холодильнике.


Выводы по проекту
В данной курсовой работе представлен процесс выпаривания раствора хлорида аммония.

В результате приведенных выше расчетов были выбраны следующие аппараты:

  • выпарной аппарат: тип 1 исполнение 2 группа А – выпарной аппарат с вынесенной греющей камерой и трубой вскипания с площадью теплообмена (по внутреннему диаметру трубы);

  • Для подогрева мы выбираем: 2-у ходовый теплообменник, с внутренним диаметром кожуха , числом труб , поверхностью теплообмена , длиной труб , проходным сечением и числом рядов труб , расположенных в шахматном порядке.

-барометрический конденсатор диаметром с высотой трубы 7,585м. (/5/, табл. 2.7 стр. 26).

  • вакуум насос типа ВВН1-3 мощностью N=4,95 кВт

  • холодильник: кожухотрубчатый двухходовой теплообменник с внутренним диаметром кожуха , числом труб , поверхностью теплообмена , длиной труб , проходным сечением трубного пространства , проходным сечением межтрубного пространства и числом рядов труб .

Расход греющего пара на всю установку: .

Расход воды на всю установку: .

Среда раствора хлорида аммония относится к слабоагрессивным средам, поэтому в качестве основного конструкционного материала для всех аппаратов применима сталь Ст3кп.
Литература


  1. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов/Под ред. чл.- корр. АН СССР П. Г. Романкова, - 10-е изд., перераб. и доп. – Л.: Химия, 1987. – 576 с.

  2. Борисов Г.С., Брыков В.П., Дытнерский Ю. И./Под редакцией Дытнерского Ю. И., 2-е изд., перераб. и доп. – М.: Химия, 1991. – 496с

  3. Курсовое проектирование по процессам и аппаратам химической технологии. Краткие справочные данные: Метод. указания/ЛТИ им. Ленсовета. – Л.: 1989. – 40 с.

  4. Касаткин А.Г. Основные процессы и аппараты химической технологии, 8-е изд., М.: Химия, 1971. – 784 с.

  5. Методическое пособие №705
1   2   3   4   5   6


написать администратору сайта