Главная страница

Справочник по математике. Справочное_пособие_Visual C++. Программа на C, типы данных и их размер Адресация в С


Скачать 0.66 Mb.
НазваниеПрограмма на C, типы данных и их размер Адресация в С
АнкорСправочник по математике
Дата19.12.2022
Размер0.66 Mb.
Формат файлаpdf
Имя файлаСправочное_пособие_Visual C++.pdf
ТипПрограмма
#852232
страница5 из 13
1   2   3   4   5   6   7   8   9   ...   13
Open возвращает не нулевое значение, если файл открыт и нуль в случае ошибки. Ошибка при открытии файла может случиться, например, если методу Open указан для чтения несуществующий файл.
Идентификатор открытого файла
В состав класса CFile входит элемент данных m_hFile типа UINT. В нем хранится идентификатор открытого файла. Если объект класса CFile уже создан, но файл еще не открыт, то в переменной m_hFile записана константа hFileNull.
Обычно идентификатор открытого файла непосредственно не используется. Методы класса CFile позволяют выполнять практически любые операции с файлами и не требуют указывать идентификатор файла. Так как m_hFile является элементом класса, то реализация его методов всегда имеет свободный доступ к нему.
Закрытие файлов
После завершения работы с файлом, его надо закрыть. Класс CFile имеет для этого специальный метод Close. Нужно заметить, что если был создан объект класса CFile и открыт файл, а затем объект удаляется, то связанный с ним файл закрывается автоматически с помощью деструктора.
Чтение и запись файлов
Для доступа к файлам предназначено несколько методов класса CFile: Read, ReadHuge, Write,
WriteHuge, Flush. Методы Read и ReadHuge предназначены для чтения данных из предварительно открытого файла. В 32-разрядных операционных системах оба метода могут одновременно считать
из файла больше 65535 байт. Спецификация ReadHuge считается устаревшей и оставлена только для совместимости с 16-разрядными операционными системами.
Данные, прочитанные из файла, записываются в буфер lpBuf. Параметр nCount определяет количество байт, которое надо считать из файла. Фактически из файла может быть считано меньше байт, чем запрошено параметром nCount. Это происходит, если во время чтения достигнут конец файла. Методы возвращают количество байт, прочитанных из файла.
Для записи в файл предназначены методы Write и WriteHuge. В 32-разрядных операционных системах оба метода могут одновременно записывать в файл больше 65535 байт. Методы записывает в открытый файл nCount байт из буфера lpBuf. В случае возникновения ошибки записи, например переполнения диска, методы вызывает обработку исключения.
Метод Flush
Когда используется метод Write или WriteHuge для записи данных на диск, они некоторое время могут находиться во временном буфере. Чтобы убедиться, что необходимые изменения внесены в файл на диске, нужно воспользоваться методом Flush.
Операции с файлами
В состав класса входят методы, позволяющие выполнять над файлами различные операции, например копирование, переименование, удаление, изменение атрибутов.
Для изменения имени файла класс CFile включает статический метод Rename, выполняющий функции этой команды. Метод нельзя использовать для переименования каталогов. В случае возникновения ошибки метод вызывает исключение.
Для удаления файлов в классе CFile включен статический метод Remove, позволяющий удалить указанный файл. Этот метод не позволяет удалять каталоги. Если удалить файл невозможно, то метод вызывает исключение.
Чтобы определить дату и время создания файла, его длину и атрибуты, предназначен статический метод GetStatus. Существует две разновидности метода - первый определен как виртуальный, а второй - как статический метод.
Виртуальная версия метода GetStatus определяет состояние открытого файла, связанного с данным объектом класса CFile. Этот метод вызывается только тогда, когда объект класса CFile создан и файл открыт.
Статическая версия метода GetStatus позволяет определить характеристики файла, не связанного с объектом класса CFile. Чтобы воспользоваться этим методом, необязательно предварительно открывать файл.
Блокировка
В состав класса включены методы LockRange и UnlockRange, позволяющие заблокировать один или несколько фрагментов данных файла для доступа из других процессов. Если приложение пытается повторно блокировать данные, уже заблокированные раньше этим или другим приложением, вызывается исключение. Блокировка представляет собой один из механизмов, позволяющих нескольким приложениям или процессам одновременно работать с одним файлом, не мешая друг другу.
Установить блокировку можно с помощью метода LockRange. Чтобы снять установленные блокировки, надо воспользоваться методом UnlockRange. Если в одном файле установлены несколько блокировок, то каждая из них должна сниматься отдельным вызовом метода UnlockRange.

Позиционирование
Чтобы переместить указатель текущей позиции файла в новое положение, можно воспользоваться одним из следующих методов класса CFile - Seek, SeekToBegin, SeekToEnd. В состав класса CFile также входят методы, позволяющие установить и изменить длину файла, - GetLength, SetLength.
При открытии файла указатель текущей позиции файла находится в самом начале файла. Когда порция данных прочитана или записана, то указатель текущей позиции перемещается в сторону конца файла и указывает на данные, которые будут читаться или записываться очередной операцией чтения или записи в файл.
Чтобы переместить указатель текущей позиции файла в любое место, можно воспользоваться универсальным методом Seek. Он позволяет переместить указатель на определенное число байт относительно начала, конца или текущей позиции указателя.
Чтобы переместить указатель в начало или конец файла, наиболее удобно использовать специальные методы. Метод SeekToBegin перемещает указатель в начало файла, а метод SeekToEnd - в его конец.
Но для определения длины открытого файла совсем необязательно перемещать его указатель. Можно воспользоваться методом GetLength. Этот метод также возвращает длину открытого файла в байтах.
Метод SetLength позволяет изменить длину открытого файла. Если при помощи этого метода размер файла увеличивается, то значение последних байт не определено.
Текущую позицию указателя файла можно определить с помощью метода GetPosition.
Возвращаемое методом GetPosition 32-разрядное значение определяет смещение указателя от начала файла.
Характеристики открытого файла
Чтобы определить расположение открытого файла на диске, надо вызвать метод GetFilePath. Этот метод возвращает объект класса CString, в котором содержится полный путь файла, включая имя диска, каталоги, имя файла и его расширение.
Если требуется определить только имя и расширение открытого файла, можно воспользоваться методом GetFileName. Он возвращает объект класса CString, в котором находится имя файла. В случае, когда нужно узнать только имя открытого файла без расширения, пользуются методом
GetFileTitle.
Следующий метод класса CFile позволяет установить путь файла. Это метод не создает, не копирует и не изменяет имени файла, он только заполняет соответствующий элемент данных в объекте класса
CFile.
Класс CMemFile
В библиотеку MFC входит класс CMemFile, наследуемый от базового класса CFile. Класс CMemFile представляет файл, размещенный, в оперативной памяти. С объектами класса CMemFile так же, как и с объектами класса CFile. Отличие заключается в том, что файл, связанный с объектом CMemFile, расположен не на диске, а в оперативной памяти компьютера. За счет этого операции с таким файлом происходят значительно быстрее, чем с обычными файлами.
Работая с объектами класса CMemFile, можно использовать практически все методы класса CFile, которые были описаны выше. Можно записывать данные в такой файл или считывать их. Кроме этих методов в состав класса CMemFile включены дополнительные методы.
Для создания объектов класса CMemFile предназначено два различных конструктора. Первый конструктор CMemFile имеет всего один необязательный параметр nGrowBytes:

CMemFile(UINT nGrowBytes=1024);
Этот конструктор создает в оперативной памяти пустой файл. После создания файл автоматически открывается (не нужно вызывать метод Open).
Когда начинается запись в такой файл, автоматически выделяется блок памяти. Для получения памяти методы класса CMemFile вызывают стандартные функции malloc, realloc и free. Если выделенного блока памяти недостаточно, его размер увеличивается. Увеличение блока памяти файла происходит по частям по nGrowBytes байт. После удаления объекта класса CMemFile используемая память автоматически возвращается системе.
Второй конструктор класса CMemFile имеет более сложный прототип. Это конструктор используется в тех случаях, когда программист сам выделяет память для файла:
CMemFile(BYTE* lpBuffer, UINT nBufferSize, UINT nGrowBytes=0);
Параметр lpBuffer указывает на буфер, который будет использоваться для файла. Размер буфера определяется параметром nBufferSize.
Необязательный параметр nGrowBytes используется более комплексно, чем в первом конструкторе класса. Если nGrowBytes содержит нуль, то созданный файл будет содержать данные из буфера lpBuffer. Длина такого файла будет равна nBufferSize.
Если nGrowBytes больше нуля, то содержимое буфера lpBuffer игнорируется. Кроме того, если в такой файл записывается больше данных, чем помещается в отведенном буфере, то его размер автоматически увеличивается. Увеличение блока памяти файла происходит по частям по nGrowBytes байт.
Класс CMemFile позволяет получить указатель на область памяти, используемую файлом. Через этот указатель можно непосредственно работать с содержимым файла, не ограничивая себя методами класса CFile. Для получения указателя на буфер файла можно воспользоваться методом Detach.
Перед этим полезно определить длину файла (и соответственно размер буфера памяти), вызвав метод
GetLength.
Метод Detach закрывает данный файл и возвращает указатель на используемый им блок памяти.
Если опять потребуется открыть файл и связать с ним оперативный блок памяти, нужно вызвать метод Attach.
Нужно отметить, что для управления буфером файла класс CMemFile вызывает стандартные функции malloc, realloc и free. Поэтому, чтобы не нарушать механизм управления памятью, буфер lpBuffer должен быть создан функциями malloc или calloc.
Класс CStdioFile
Тем, кто привык пользоваться функциями потокового ввода/вывода из стандартной библиотеки C и
C++, следует обратить внимание на класс CStdioFile, наследованный от базового класса CFile. Этот класс позволяет выполнять буферизированный ввод/вывод в текстовом и двоичном режиме. Для объектов класса CStdioFile можно вызывать практически все методы класса CFile.
В класс CStdioFile входит элемент данных m_pStream, который содержит указатель на открытый файл. Если объект класса CStdioFile создан, но файл еще не открыт, либо закрыт, то m_pStream содержит константу NULL.
Класс CStdioFile имеет три различных конструктора. Первый конструктор класса CStdioFile не имеет параметров. Этот конструктор только создает объект класса, но не открывает никаких файлов. Чтобы открыть файл, надо вызвать метод Open базового класса CFile.

Второй конструктор класса CStdioFile можно вызвать, если файл уже открыт и нужно создать новый объект класса CStdioFile и связать с ним открытый файл. Этот конструктор можно использовать, если файл был открыт стандартной функцией fopen. Параметр метода должен содержать указатель на файл, полученный вызовом стандартной функции fopen.
Третий конструктор можно использовать, если надо создать объект класса CStdioFile, открыть новый файл и связать его с только что созданным объектом.
Для чтения и записи в текстовый файл класс CStdioFile включает два новых метода: ReadString и
WriteString. Первый метод позволяет прочитать из файла строку символов, а второй метод - записать.
Примеры записи и чтения из файла
Приведем фрагменты кода, в которых демонстрируется использование стандартных диалоговых панелей выбора файла и процедуры чтения и записи в файл.
Открытие файла и чтение из него
CString m_Text;
……
// создание стандартной панели выбора файла Open
CFileDialog DlgOpen(TRUE,(LPCSTR)"txt",NULL,
OFN_HIDEREADONLY,(LPCSTR)" Text Files (*.txt) |*.txt||");
// отображение стандартной панели выбора файла Open if(DlgOpen.DoModal()==IDOK)
{
// создание объекта и открытие файла для чтения
CStdioFile
File(DlgOpen.GetPathName(),CFile::modeRead|CFile::typeBinary);
// чтение из файла строки
CString& ref=m_Text;
File.ReadString(ref); // передается ссылка на строку m_Text
}
Открытие файла и запись из него
CString m_Text;
……
// создание стандартной панели выбора файла SaveAs
CFileDialog DlgSaveAs(FALSE,(LPCSTR)"txt",NULL,
OFN_HIDEREADONLY|OFN_OVERWRITEPROMPT,
(LPCSTR)" Text Files (*.txt) |*.txt||");
// отображение стандартной панели выбора файла SaveAs if(DlgSaveAs.DoModal()==IDOK) {
// создание объекта и открытие файла для записи
CStdioFile File(DlgSaveAs.GetPathName(),
CFile::modeCreate|CFile::modeWrite|CFile::typeBinary);
// запись в файл строки
File.WriteString((LPCTSTR)m_Text);
}
10. Использование таймера.

1. Введение
2. Создание и уничтожение таймера
3. Сообщение WM_TIMER
4. Первый способ использования таймера
5. Второй способ использования таймера
6. Пример Windows-приложения, использующего таймер
1. Введение
Во многих программах требуется следить за временем или выполнять какие-либо периодические действия. Программы MS-DOS для работы с таймером перехватывали аппаратное прерывание таймера, встраивая свой собственный обработчик для прерывания INT 8h. Обычные приложения
Windows не могут самостоятельно обрабатывать прерывания таймера, поэтому для работы с ним нужно использовать другие способы.
Операционная система Windows позволяет для каждого приложения создать несколько виртуальных таймеров. Все эти таймеры работают по прерываниям одного физического таймера.
Так как работа Windows основана на передаче сообщений, логично было бы предположить, что и работа виртуального таймера также основана на передаче сообщений. И в самом деле, приложение может заказать для любого своего окна несколько таймеров, которые будут периодически посылать в функцию окна сообщение с кодом WM_TIMER.
Есть и другой способ, также основанный на передаче сообщений. При использовании этого способа сообщения WM_TIMER посылаются не функции окна, а специальной функции, описанной с ключевым словом _export. Эта функция напоминает функцию окна и, так же как и функция окна, вызывается не из приложения, а из Windows. Функции, которые вызываются из Windows, имеют специальный пролог и эпилог и называются функциями обратного вызова (callback function).
Функция окна и функция, специально предназначенная для обработки сообщений таймера, являются примерами функций обратного вызова.
К сожалению, точность виртуального таймера оставляет желать лучшего. Сообщения таймера проходят через очередь приложения, к тому же другое приложение может блокировать на некоторое время работу вашего приложения. Поэтому сообщения от таймера приходят в общем случае нерегулярно. Кроме того, несмотря на возможность указания интервалов времени в миллисекундах, реальная дискретность таймера определяется периодом прерываний, посылаемых таймером. Этот период (то есть длительность одного такта таймера) можно узнать с помощью функции
GetTimerResolution:
DWORD WINAPI GetTimerResolution(void);
Нерегулярность прихода сообщений таймера не вызывает особых проблем, если речь не идет о работе в режиме реального времени. Системы реального времени, основанные на Windows, должны использовать для устройств ввода/вывода, критичных к скорости реакции системы, специальные драйверы. Строго говоря, операционная система Windows не предназначена для работы в режиме реального времени. Windows ориентирована на работу с человеком, когда небольшие задержки событий во времени не имеют никакого значения.
2. Создание и уничтожение таймера
Для создания виртуального таймера приложение должно использовать функцию SetTimer:
UINT WINAPI SetTimer(HWND hwnd, UINT idTimer, UINT uTimeout, TIMERPROC tmprc);

Первый параметр функции (hwnd) должен содержать идентификатор окна, функция которого будет получать сообщения от таймера, или NULL. В последнем случае с создаваемым таймером не связывается никакое окно и сообщения от таймера будут приходить в специально созданную для этого функцию.
Второй параметр (idTimer) определяет идентификатор таймера (он не должен быть равен нулю).
Идентификатор используется только в том случае, если первый параметр функции SetTimer содержит идентификатор окна. Так как для одного окна можно создать несколько таймеров, для того чтобы различать сообщения, приходящие от разных таймеров, приложение при создании должно снабдить каждый таймер собственным идентификатором.
Если первый параметр указан как NULL, второй параметр функции игнорируется, так как для таймера задана специальная функция, получающая сообщения только от этого таймера.
Третий параметр (uTimeout) определяет период следования сообщений от таймера в миллисекундах.
Учтите, что физический таймер тикает приблизительно 18,21 раза в секунду (точное значение составляет 1000/54,925). Поэтому, даже если вы укажете, что таймер должен тикать каждую миллисекунду, сообщения будут приходить с интервалом не менее 55 миллисекунд.
Последний параметр (tmprc) определяет адрес функции, которая будет получать сообщения
WM_TIMER (мы будем называть эту функцию функцией таймера). Этот параметр необходимо обязательно указать, если первый параметр функции SetTimer равен NULL.
Тип TIMERPROC описан в файле windows.h следующим образом: typedef void (CALLBACK* TIMERPROC)(HWND hwnd, UINT msg, UINT idTimer, DWORD dwTime);
Сравните это с описанием типа WNDPROC, который используется для знакомой вам функции окна: typedef LRESULT (CALLBACK* WNDPROC)(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);
Как видно из описания, функция таймера не возвращает никакого значения, имеет другие (по сравнению с функцией окна) параметры, но описана с тем же ключевым словом CALLBACK:
#define CALLBACK _far _pascal
Возвращаемое функцией SetTimer значение является идентификатором созданного таймера (если в качестве первого параметра функции было указано значение NULL). В любом случае функция
SetTimer возвращает нулевое значение, если она не смогла создать таймер. В Windows версии 3.0 максимальное количество созданных во всей системе таймеров было 16. Для Windows версии 3.1 это ограничение снято.
Тем не менее, если приложение больше не нуждается в услугах таймера, оно должно уничтожить таймер, вызвав функцию KillTimer:
BOOL WINAPI KillTimer (HWND hwnd, UINT idTimer);
Первый параметр функции (hwnd) определяет идентификатор окна, указанный при создании таймера функцией SetTimer.
Второй параметр (idTimer) - идентификатор уничтожаемого таймера. Это должен быть либо тот идентификатор, который вы указали при создании таймера (если таймер создавался для окна), либо значение, полученное при создании таймера от функции SetTimer (для таймера, имеющего собственную функцию обработки сообщений).

Функция KillTimer возвращает значение TRUE при успешном уничтожении таймера или FALSE, если она не смогла найти таймер с указанным идентификатором.
1   2   3   4   5   6   7   8   9   ...   13


написать администратору сайта