Главная страница
Навигация по странице:

  • Общие сведения о датчиках и сигнализаторах обледенения.

  • Требования к ПОС.

  • Разновидности ПОС самолетов с ТРД и ТВД.

  • Принцип работы воздушно-тепловых ПОС воздухозаборников двигателей, крыла и хвостового оперения. Воздушно-тепловые противообледенительные системы

  • Принцип работы электротепловых и электроиндукционных ПОС винтов и коков двигателей, крыла и хвостового оперения, стекол фонаря кабины экипажа, приемников полного давления.

  • Эксплуатация ПОС самолета на земле и в воздухе.

  • Противообледенительная система


    Скачать 76.44 Kb.
    НазваниеПротивообледенительная система
    Дата21.04.2018
    Размер76.44 Kb.
    Формат файлаdocx
    Имя файлаProtivoobledenitelnaya_sistema.docx
    ТипДокументы
    #41753

    Противообледенительная система

    (ПОС) — предназначается для защиты летательного аппарата от обледенения. Выполняется защита лобовых частей несущих поверхностей летательного аппарата, воздухозаборников силовых установок, воздушных винтов, остекления, приёмников воздушного давлений.

    Общие сведения о датчиках и сигнализаторах обледенения.

    В полете экипаж о начавшемся обледенении может судить по осаждению льда на отдельных частях летательного аппарата, по тряске двигателей, уменьшению скорости полета и т. п. Для определения интенсивности обледенения на некоторых типах летательных аппаратов в поле зрения летчика устанавливают визуальный указатель обледенения. Он представляет собой небольшую профилированную стойку, снабженную штырем, разделенным по длине на участки по 10 мм. При помощи этого указателя можно оценить толщину слоя льда и интенсивность обледенения.

    Для предупреждения пилота о начавшемся обледенении обычно используется сигнализатор мембранного типа (рисунок 1.7). Он состоит из двух основных частей: дифференциального манометра с двумя герметическими камерами 5, 6 и заборника полного и статического давлений. Приемник давления может устанавливаться в воздухозаборниках двигателей, передних кромках крыла и других подверженных обледенению частях летательного аппарата. Работа сигнализатора основана на использовании упругих свойств чувствительного элемента - металлической гофрированной мембраны 8, замыкающей и размыкающей электрические контакты 7, что происходит при изменении скоростного напора воздушного потока, омывающего заборник сигнализатора.

    1 - заборные отверстия; 2 - обогреватель заборника сигнала; 3 - отверстие для приема статического давления; 4 - жиклер; 5 - камера, воспринимающая статическое давление; 6 - камера, воспринимающая полное давление; 7 - контакты цепи питания сигнальной лампы; 8 - мембрана; 9 - сигнальная лампа

    Камера 6 при помощи отверстий 1 воспринимает полное давление набегающего потока воздуха. Камера 5 воспринимает статическое давление через отверстие 3, расположенное на боковой поверхности заборника. В полете при отсутствии льда на поверхностях летательного аппарата, а, следовательно, и на датчике сигнализатора в отверстиях 1 создается полное давление воздушного потока, которое передается в камеру 6. Под действием разности давлений мембрана прогибается и удерживает контакты 7 в разомкнутом достоянии. При полете в зоне обледенения отверстия 1 закупориваются пленкой льда, в результате чего прекращается доступ полного давления в камеру 6. Давление в камерах 5 и 6 через жиклер 4 выравнивается, мембрана возвращается в исходное положение, замыкая контакты 7 цепи питания сигнальной лампы «Обледенение» 9 и обогревателя 2 заборника сигнализатора. Под действием тепла, выделяемого обогревателем, лед стаивает, отверстия в заборнике открываются. Восстановившийся перепад давлений в камерах размыкает контакты, выключая при этом сигнальную лампу и обогреватель заборника сигнализатора. Если к этому времени летательный аппарат не выйдет из зоны обледенения, то датчик полного давления снова подвергается обледенению и цикл вновь повторяется.

    Недостатком сигнализаторов мембранного типа является запаздывание в выдаче сигнала начала обледенения, а также невозможность замера скорости нарастания льда и регистрации вида обледенения.

    Среди других типов сигнализаторов обледенения находит применение радиоактивный сигнализатор (рисунок 2). Датчик сигнализатора включает в себя источник β-излучения (стронций 90 и иттрий 90) и счетчик радиоактивного излучения. Электронный блок обеспечивает питание счетчика напряжением 450 В и усиливает сигнал, получаемый от счетчика. Блок задержки преобразует периодический сигнал в непрерывный при входе летательного аппарата в зону обледенения.



    Рисунок 2 - Блок-схема радиоактивного сигнализатора обледенения

    Принцип действия прибора основан на торможении β-излучения слоем льда, нарастающим на выносном цилиндрическом штыре. Датчик работает следующим образом. Поток β-частиц, непрерывно излучаемых радиоактивным источником, попадает на счетчик. Импульсы напряжения, снимаемые со счетчика, регистрируются электронным блоком. Изменение потока β-частиц в электронном блоке преобразуется в изменение напряжения. Если напряжение превысит определенный уровень, срабатывает релейная схема, контакты которой включают световую сигнализацию, предупреждающую летчика об обледенении. Одновременно включается обогревательный элемент датчика, что обеспечивает удаление льда с поверхности штыря. После того как лед удален, прибор возвращается в исходное состояние. Процесс повторяется до тех пор, пока самолет находится в зоне обледенения. Толщина льда на штыре датчика, при которой срабатывает сигнализатор, находится в пределах 1 мм.

    На некоторых типах летательных аппаратов устанавливают сигнализаторы обледенения, в основу работы которых положена электропроводность льда, оседающего на поверхности датчика. При оседании на поверхности датчика льда происходит замыкание контактных колец датчика. Так как к одному из колец подведено напряжение от бортовой сети, а к другому присоединена управляющая сетка тиратрона, то при замыкании цепи на сетку поступит напряжение, достаточное для отпирания тиратрона. Это приводит к срабатыванию системы, т. е. включению обогрева датчика и сигнальной лампы «Обледенение». В блоке слежения сигнализатора имеются устройства, предохраняющие систему от ложных срабатываний при полетах в дождь, от преждевременных отключений, случайных замыканий цепи.

    Заслуживает внимания система сигнализации, построенная на следующем принципе. В качестве датчика используют цилиндрический зонд, который специальным генератором поддерживается в условиях осевых вибраций при резонансной частоте. При полете в зоне обледенения в канале датчика накапливается лед, что снижает резонансную частоту датчика. Изменение частоты ниже определенной величины воспринимается системой управления, которая выдает предупредительный сигнал «Обледенение» и включает на несколько секунд систему обогрева датчика. Время подогрева выбирают достаточным для удаления льда и подготовки датчика к последующему циклу работы.

    На иностранных самолетах получил распространение сигнализатор обледенения, состоящий из стержня, выдвинутого в набегающий поток и вращаемого электродвигателем. В процессе обледенения образовавшийся лед счищается металлическим ножом. При увеличении крутящего момента до определенной величины система срабатывает, включая сигнализацию. Подключив к сигнализаторам рабочие механизмы противообледенительной системы, можно обеспечить автоматическое управление системой, разгрузив экипаж от излишних операций в полете и повысив эффективность защиты летательного аппарата от обледенения.
    Требования к ПОС.

    • обеспечение безопасности полета в любых условиях обледенения и на всех режимах работы двигателей;

    • надежность и эффективность работы при различных метеорологических условиях в широком диапазоне скоростей и высот полета, неограниченность времени работы;

    • возможность регулирования интенсивности обогрева в зависимости от температуры наружного воздуха и интенсивности обледенения;

    • безопасность включения системы при стоянке и рулении летательного аппарата;

    • высокий темп нагрева защищаемых поверхностей;

    • воздухозаборники двигателей и все выступающие детали в их каналах должны иметь противообледенительную систему непрерывного действия, не допускающую льдообразования на защищаемых поверхностях как на земле, так и в полете;

    • наличие сигнализаторов начала обледенения и указателей интенсивности обледенения, минимальное время срабатывания датчиков, высокая чувствительность и отсутствие ложных срабатываний;

    • безопасность в пожарном отношении;

    • минимальный расход энергии;

    • отсутствие мешающего действия на работу радионавигационного оборудования;

    • малые вес и габариты;

    • быстрая готовность к действию, автоматическое включение и выключение от специальных сигнализаторов начала обледенения;

    • простота ухода и эксплуатации, возможность контроля исправности системы на земле и в полете.


    Разновидности ПОС самолетов с ТРД и ТВД.

    По принципу действия ПОС подразделяются на тепловые, механические, физико-химические и комбинированные.

    Тепловые ПОС могут быть непрерывного действия (предотвращают льдообразование на защищаемой поверхности) и периодического, или циклического, действия. Последние периодически удаляют лёд, образующийся на секциях противообледенителя, на которые разделяется защищаемая поверхность с целью сокращения одновременно потребляемой энергии (лёд подплавляется и затем сдувается потоком воздуха или сбрасывается центробежной силой с вращающихся частей). В зависимости от источника нагрева различают электротепловые, воздушно-тепловые и жидкостно-тепловые ПОС.

    Механические ПОС удаляют образующийся лёд обычно путём деформации поверхности, например, с помощью эластичных накладок с камерами, которые поочерёдно раздуваются сжатым воздухом (пневматические ПОС), или в результате взаимодействия электромагнитного поля индукторов, расположенных под обшивкой, с наведённым в обшивке полем.

    В физико-химических ПОС применяются жидкости, образующие с водой незамерзающие смеси и растворяющие лёд, либо покрытия, которые при взаимодействии со льдом растворяют прилегающий его слой; эффективность их ограничена.

    В комбинированных ПОС используются различные принципы действия (например, на лобовом стекле устанавливается механическая щётка, действующая одновременно с тепловой или физико-химической ПОС).

    Наиболее распространены тепловые ПОС, являющиеся самыми энергоёмкими. Наименее энергоёмки электроимпульсные ПОС, но они плохо удаляют лёд небольшой толщины, поэтому устанавливаются в случаях, когда такое льдообразование допустимо, имеется упруго-деформируемая обшивка и можно разместить под ней индукторы. Пневматические ПОС применяются на некоторых дозвуковых лёгких и средних самолётах. Для защиты различных элементов одного и того же летательного аппарата могут использоваться ПОС различных типов, выбор их зависит от располагаемых источников энергии, их размещения, конструкции защищаемого элемента и т. п..

    ПОС могут включаться либо вручную, либо автоматически от сигнализатора обледенения. Сигнализатор состоит из датчика (реагирует на образующийся на нём лёд либо на наличие в потоке воздуха переохлаждённой воды), преобразователя и индикатора (лампочка, табло). Для повышения эффективности применяются автоматические системы управления работой ПОС в зависимости от условий обледенения

    Для защиты силовых установок от обледенения наибольшее распространение получили тепловые системы. В зависимости от источников энергии они подразделяются на воздушно-тепловые и электротепловые. В первых используют тепловую энергию воздуха, отбираемого от компрессора двигателя. Чем выше температура и давление воздуха за компрессором, тем эффективнее работают эти системы. В случае небольшого расхода воздуха через двигатель (ПД, ТВД) горячий воздух может быть получен при помощи теплообменников, обогреваемых выходящими газами.

    ПОС могут быть постоянного действия и циклические. Системы постоянного действия не допускают образования льда на защищаемых поверхностях. Они применяются для предохранения от обледенения воздухозаборников двигателей и деталей, расположенных в воздухозаборном канале, скопление льда на которых и последующее его удаление может нарушить нормальную работу двигателя или вызвать его повреждение. Системы циклического действия периодически сбрасывают образующийся на защищаемых поверхностях слой льда.

    Факторы, влияющие на выбор ПОС

    • Экономичное использование располагаемой энергии.

    • Необходимая степень защиты от обледенения.

    • Возможность конструктивного выполнения противообледенителя на элементе конструкции ВС.

    • Получение минимальной взлетной массы ПОС.

    • Расположение источников энергии относительно защищаемых поверхностей.

    • Последствия отказа ПОС.

    Принцип работы воздушно-тепловых ПОС воздухозаборников двигателей, крыла и хвостового оперения.

    Воздушно-тепловые противообледенительные системы

    В этой системе предусмотрен подвод горячего воздуха от компрессора в кольцевую камеру, расположенную на глубине 200-250 мм в носке воздухозаборника. Камера отделена от подкапотного пространства двигателя герметической перегородкой. При открытии заслонки горячий воздух поступает в камеру. Пройдя по кольцевому каналу, воздух выбрасывается в подкапотное пространство. Для создания равномерного температурного поля подвод горячего воздуха в кольцевую камеру может осуществляться в нескольких точках по окружности. Понижение температуры и увеличение количества поступающего воздуха обеспечиваются эжектором, посредством которого происходит подсасывание воздуха из подкапотного пространства, смешение его с воздухом, поступающим от компрессора, и подача в обогреваемые полости.

    Для защиты от обледенения элементов конструкции, расположенных во входном тракте двигателя (обтекатель, лопатки входного направляющего аппарата, воздухоразделительные перегородки и т. п.), используется воздух, отбираемый от компрессора двигателя. В рассматриваемой схеме горячий воздух по трубопроводу поступает внутрь лопаток направляющего аппарата, обогревает их, а затем подходит к передней части обтекателя. Далее по кольцевому каналу, образованному наружной стенкой и внутренним дефлектором, воздух проходит вдоль обтекателя и выбрасывается через отверстия во входной канал двигателя.

    Обогрев лопаток направляющего аппарата может производиться и таким способом. Воздух по специальным отверстиям из-за одной из ступеней компрессора направляется во внутреннюю полость ротора двигателя, а затем через отверстия в диафрагмах дисков проходит в полость А. Из этой полости воздух подходит к нижним цапфам лопаток, проходит по внутреннему каналу в теле лопатки, а затем через отверстия в верхней ее части выходит в воздушный тракт двигателя.

    К недостаткам воздушно-тепловых систем необходимо отнести их незначительную эффективность при работе двигателей на режимах, близких к режиму малого газа, из-за понижения расхода и температуры воздуха. Особенно это относится к двигателям с низкой степенью повышения давления. Кроме того, при включении воздушно-тепловой системы уменьшается мощность (тяга) и повышается температурный режим двигателя, увеличивается удельный расход топлива. Для ТРД уменьшение тяги почти прямо пропорционально количеству отбираемого воздуха. ТВД более чувствителен к отбору воздуха: на 1% отбираемого системой воздуха приходится снижение мощности ТВД на 1,5-2% и ухудшению экономичности на 1-1,5%. Максимальное количество воздуха, которое может быть отобрано от двигателей, не должно превышать для ТРД - 12%, для ДТРД - 7%, и для ТВД - 5%.

    ПОС самолета суперджет 100 является тепловой воздушной системой постоянного действия. В системе используется воздух от маршевых двигателей, предварительно охлажденный в системе отбора воздуха до 200°С (в нормальном режиме работы силовой установки) или 230°С (при отказе одного из двигателей).

    Основной режим работы системы предусматривает ее автоматическое включение по сигналу от сигнализатора обледенения (на самолете устанавливается два сигнализатора для обеспечения надежности). Также предусмотрена возможность ручного принудительного включения системы. В процессе работы ПОС заслонка подачи воздуха регулирует количество подаваемого воздуха в зависимости от температуры поверхности передней кромки предкрылка. В отказном режиме предусмотрена возможность автоматического переключения на управление расхода по давлению в трубопроводах системы.

    Применение воздушно-тепловой системы целесообразно для воздухозаборников с радиусами закруглений входных кромок более 6-8 мм. При острых носках сверхзвуковых воздухозаборников эти системы становятся малоэффективными, что вызывает необходимость перехода к электротепловым ПОС.

    Принцип работы электротепловых и электроиндукционных ПОС винтов и коков двигателей, крыла и хвостового оперения, стекол фонаря кабины экипажа, приемников полного давления.

    Электротепловые системы не имеют недостатков, присущих воздушно-тепловым. Их применение требует значительных по мощности источников электрической энергии.

    Эти системы состоят из нагревательных элементов, программного механизма, источников энергии, контакторов и электропроводки.

    Нагревательный элемент обычно выполняют в виде тонкой, укладываемой по секциям металлической фольги, токопроводящих лаков, ленточных нагревателей, изготовленных напылением и изолированных эпоксидной смолой, проволок, или в виде токопроводящего слоя резины. Эти элементы, расположенные между слоями изоляции, называют нагревательными пакетами. Для предохранения от механических повреждений и эрозии пакет после закрепления на защищаемой от обледенения поверхности закрывают снаружи накладкой.

    Конструкция нагревательного пакета позволяет получить наиболее выгодное распределение энергии по обогреваемому профилю, а также дает возможность, изменяя толщину слоев изоляции, направить поток тепла в нужном для обогрева направлении. Электротепловая система обладает более высоким коэффициентом использования тепла. Располагаемая энергия практически не зависит от режимов работы двигателя, высоты и скорости полета, температуры окружающего воздуха. Кроме того, систему можно установить на любых по размерам и форме частях силовой установки.

    Эти ПОС применяют для защиты от обледенения воздушных винтов и сверхзвуковых воздухозаборников.

    Они питаются от генераторов постоянного или переменного тока. С точки зрения простоты конструкции лучшей является система постоянного тока, однако удельный вес ее значительно больше (на единицу мощности).

    Электротепловые системы могут быть постоянно или периодически (циклически) нагреваемыми. Циклические системы разрешают льдообразование в допустимых пределах и должны обеспечивать полное удаление льда за один цикл. Системы с постоянным нагревом применяют обычно для защиты агрегатов, требующих небольшой мощности, или там, где по условиям работы на защищаемых поверхностях не допускается льдообразование (воздухозаборники двигателей).

    При циклическом нагреве вся защищаемая от обледенения поверхность делится на несколько секций, состоящих из нагревательных пакетов. Каждая секция посредством специального устройства (программного механизма) на некоторое время подключается к источникам энергии, а затем нагрев ее прекращается. При таком нагреве значительно экономится электрическая энергия, так как на режиме остывания на защищаемой поверхности образуется небольшой слой льда, резко уменьшающий снятие тепла с поверхности набегающим потоком воздуха.

    При циклическом обогреве энергия расходуется на таяние только незначительной части льда, необходимой для нарушения сцепления отложившегося льда с защищаемой поверхностью. В дальнейшем оттаявший лед уносится набегающим потоком воздуха. Лед должен сбрасываться достаточно быстро. Это условие особенно строго необходимо выполнять для воздушных винтов ТВД или ПД, так как обледенение лопастей приводит к увеличению их сопротивления и снижению несущих свойств. Кроме того, асимметричное сбрасывание льда приводит к разбалансировке винта и увеличению вибраций. Для быстрого и полного сбрасывания льда с лопастей необходимо применять весьма большие удельные мощности при возможно меньшем времени обогрева. При условии одновременного сброса льда по всей длине лопасти желательно удельную мощность обогрева изменять от максимального значения у корня до минимального на конце лопасти.
    Эксплуатация ПОС самолета на земле и в воздухе.

    Эксплуатация ПОС не вызывает особых затруднений. Работу системы проверяют в сроки, указанные регламентом технического обслуживания, после длительной стоянки (более двух месяцев) летательного аппарата и после проведения работ, связанных с демонтажем отдельных элементов ПОС. Если ЛА оборудован воздушно-тепловой системой, то проверку ее работы на земле производят на режимах работы двигателей от 0,2 номинального до номинального включительно. Работу системы контролируют по загоранию ламп, сигнализирующих об открытии кранов подачи воздуха, или по температуре воздуха, поступающего в систему. Проверку ПОС воздухозаборников можно производить при неработающих двигателях путем визуального контроля за перекладкой каждой заслонки из закрытого положения в открытое и обратно. При этом необходимо убедиться, что заслонка и ее электромеханизм двигаются плавно, без заеданий, и люфты в тягах управления заслонкой отсутствуют.

    Проверку ПОС электротеплового типа можно производить как от бортовых генераторов (при работающих двигателях), так и от аэродромных источников энергии. Работу системы контролируют по амперметрам и времени включения и выключения сигнальных ламп. Во избежание перегрева, в результате которого возможна деформация защищаемых от обледенения поверхностей, ПОС на земле включают на время, не превышающее указанного в инструкции по эксплуатации данного типа летательного аппарата. Если при этом режим работы сигнальных ламп не выдерживается или показания амперметра не соответствуют установленным, необходимо выключить систему и проверить исправность контакторов программного механизма и нагревательных элементов. Состояние наружных поверхностей противообледенителей проверяют путем визуального осмотра, в результате которого убеждаются в отсутствии механических повреждений, коробления обшивки, прогара и других дефектов.

    Отрицательные температуры окружающего воздуха и повышенная водность приводят к обмерзанию воздухозаборников двигателей при стоянке летательного аппарата. Кроме того, из-за малого радиального зазора между лопатками и корпусом компрессора (турбины) иногда наблюдаются случаи примерзания лопаток к корпусу. Поэтому перед запуском двигателя при подготовке силовой установки к полету необходимо осмотреть входной канал двигателя, направляющий аппарат и первые ступени компрессора. В случае обнаружения на этих поверхностях льда, снега или инея рекомендуется прогреть и просушить входной канал горячим воздухом.

    Запуск двигателя в условиях обледенения с включенной электротепловой ПОС не представляет опасности, так как обогреваемые поверхности достигают расчетной температуры достаточно быстро. Воздушно-тепловая ПОС из-за медленного прогрева защищаемых поверхностей не исключает возможности образования льда на этих поверхностях в процессе запуска двигателя. При достижении оборотов малого газа обледенение входных устройств прекращается.

    Для некоторых типов двигателей с низкой степенью повышения давления за компрессором при работе на режиме малого газа или близком к нему тепловой энергии может быть недостаточно, чтобы устранить обледенение. В этом случае рекомендуется ограничивать или же полностью избегать опасных в отношении обледенения режимов работы двигателя.

    Полеты в условиях обледенения необходимо производить с постоянно включенными ПОС двигателей и воздушных винтов. Их следует включать до входа в зону обледенения и выключать после выхода летательного аппарата из этой зоны. Необходимо помнить, что электротепловая система имеет тепловую инерцию значительно меньшую, чем воздушно-тепловая, а это значит, что воздушно-тепловую систему необходимо в опасных для обледенения случаях включать заблаговременно, чтобы защищаемые поверхности смогли как следует прогреться.



    написать администратору сайта