Главная страница
Навигация по странице:

  • Распространение длинных волн

  • Достоинством средних волн

  • 2.4 Особенности распространения радиоволн различных диапазонов

  • Мириаметровые и километровые волны (СДВ и ДВ

  • Преимущество СДВ-, ДВ- диапазона

  • Документ Microsoft Word. Радиочастотный диапазон и его использование для радиосвязи 1 Основы распространения радиоволн


    Скачать 446.46 Kb.
    НазваниеРадиочастотный диапазон и его использование для радиосвязи 1 Основы распространения радиоволн
    Дата17.01.2019
    Размер446.46 Kb.
    Формат файлаdocx
    Имя файлаДокумент Microsoft Word.docx
    ТипДокументы
    #64118
    страница2 из 4
    1   2   3   4

    Поверхностная волна основанием своего фронта касается Земли, как показано на рис. 2.6. Эта волна при точечном источнике всегда имеет вертикальную поляризацию, так как горизонтальная составляющая волны поглощается Землей. При достаточном удалении от источника, выраженном в длинах волн, любой отрезок фронта волны является плоской волной.

    Поверхность Земли поглощает часть энергии распространяющихся вдоль нее поверхностных волн, поскольку Земля имеет активное сопротивление.

    http://cs627426.vk.me/v627426100/3d39d/yvtyurehs5w.jpg

    Рис. 2.6 Распространение поверхностных волн.

    Чем короче волна, т.е. чем больше частота, тем больший ток индуцируется в Земле и тем больше потери. Потери в Земле уменьшаются с увеличением проводимости почвы, так как волны проникают в Землю тем меньше, чем выше проводимость почвы. В Земле происходят и диэлектрические потери, которые также увеличиваются с укорочением волны.

    Для частот выше 1 МГц поверхностная волна фактически сильно затухает из-за поглощения Землей и поэтому не используется, за исключением местной зоны действия. У телевизионных частот затухание настолько большое, что поверхностная волна может использоваться на расстояниях не больше 1-2 км от передатчика.

    Связь на большие расстояния осуществляется главным образом пространственными волнами.

    Чтобы получить преломление, т. е. возвращение волны на Землю, волна должна излучаться под определенным углом по отношению к земной поверхности. Наибольший угол излучения, при котором радиоволна данной частоты возвращается на землю, называется критическим углом для данного ионизированного слоя (рис. 2.7).http://cs627426.vk.me/v627426100/3d3a6/ncpd5au9hra.jpg

    Рис. 2.7 Влияние угла излучения на прохождение пространственной волны.

    Каждый ионизированный слой имеет свою критическую частоту и критический угол.

    На рис. 2.7 показан луч, который легко преломляется слоем Е, так как луч входит под углом ниже критического угла этого слоя. Луч 3 проходит область Е, но возвращается на Землю слоем F2, потому что он входит под углом ниже критического угла слоя F2. Луч 4 также проходит слой Е. Он входит в слой F2 при его критическом угле и возвращается на Землю. Луч 5 проходит обе области и теряется в пространстве.

    Все лучи, изображенные на рис. 2.7, относятся к одной частоте. Если используется более низкая частота, требуются большие критические углы для обеих областей; наоборот, если частота увеличивается, обе области имеют меньшие критические углы. Если продолжать увеличивать частоту, то наступит момент, когда волна, распространяющаяся от передатчика параллельно Земле, будет превышать критический угол для любой области. Такое состояние получается на частоте около 30 МГц. Выше этой частоты связь пространственной волной становится ненадежной.

    Итак, каждой критической частоте, соответствует свой критический угол, и, наоборот, каждому критическому углу соответствует своя критическая частота. Следовательно, любая пространственная волна, частота которой равна или ниже критической, будет на определенном удалении от передатчика возвращаться на Землю.

    На рис. 2.7 луч 2 падает на слой Е при критическом угле. Обратите внимание, где отраженная волна падает на Землю (при превышении критического угла сигнал теряется); пространственная волна, дойдя до ионизированного слоя, отражается от него и возвращается на Землю на большом расстоянии от передатчика. На некотором расстоянии от передатчика, зависящем от мощности передатчика и длины волны, возможен прием поверхностной волны. От того места, где кончается прием поверхностной волны, начинается зона молчания и кончается она там, где появляется отраженная пространственная волна. Резкой границы зоны молчания не имеют.

    http://cs627426.vk.me/v627426100/3d3af/2ui0z3shj1s.jpg

    Рис. 2.8 Зоны приема поверхностных и пространственных волн.

    По мере возрастания частоты величина мертвой зоны увеличивается вследствие уменьшения критического угла. Для связи с корреспондентом на определенном расстоянии от передатчика в определенные время суток и времена года существует максимальная допустимая частота, которая может быть использована для связи пространственной волной. Каждая ионосферная область имеет свою максимальную допустимую частоту для связи.

    Короткие и, тем более, ультракороткие волны в ионосфере теряют незначительную часть своей энергии. Чем выше частота, тем меньший путь проходят электроны при своих колебаниях, вследствие чего уменьшается число их столкновений с молекулами, т. е. уменьшаются потери энергии волны.

    В более низких ионизированных слоях потери больше, так как повышенное давление свидетельствует о большей плотности газа, а при большей плотности газа вероятность столкновения частиц возрастает.

    Длинные волны отражаются от нижних слоев ионосферы, имеющих наименьшую концентрацию электронов, при любых углах возвышения, в том числе и близких к 90°. Почва средней влажности является почти проводником для длинных волн, поэтому они хорошо отражаются от Земли. Многократным отражением от ионосферы и Земли объясняется дальнее распространение длинных волн.

    Распространение длинных волн не зависит от времени года и метеорологических условий, от периода солнечной активности и от ионосферных возмущений. При отражении от ионосферы длинные волны претерпевают большое поглощение. Вот почему для связи на большие расстояния необходимо иметь передатчики большой мощности.

    Средние волны заметно поглощаются в ионосфере и почве плохой и средней проводимости. Днем наблюдается только поверхностная волна, так как пространственная волна (длиннее 300 м) практически полностью поглощается в ионосфере. Для полного внутреннего отражения средние волны должны пройти некоторый путь в нижних слоях ионосферы, имеющих хотя и невысокую концентрацию электронов, но зато значительную плотность воздуха.

    Ночью с исчезновением слоя D поглощение в ионосфере уменьшается, вследствие чего на пространственных волнах можно поддерживать связь на расстояниях 1500-2000 км при мощности передатчика около 1 кВт. Условия связи зимой несколько лучше, чем летом.

    Достоинством средних волн является то, что они не подвержены влиянию ионосферных возмущений.

    Согласно международному соглашению на волнах длиной около 600 м передаются сигналы бедствия (сигналы SOS).

    Положительной стороной связи пространственной волной на коротких и средних волнах является возможность осуществления дальней связи при небольшой мощности передатчика. Но связь пространственными волнами имеет и существенные недостатки.

    Во-первых, неустойчивость связи вследствие изменения высоты ионизированных слоев атмосферы в течение суток и года. Для поддержания связи с одним и тем же пунктом за сутки приходится 2-3 раза менять длину волны. Часто вследствие изменения состояния атмосферы связь на некоторое время нарушается совсем.

    Во-вторых, наличие зоны молчания.

    Волны короче 25 м относятся к «дневным волнам», так как они хорошо распространяются днем. К «ночным волнам» относятся волны длиннее 40 м. Эти волны хорошо распространяются ночью.

    Условия распространения коротких радиоволн определяются состоянием ионизированного слоя Fг. Электронная концентрация этого слоя часто нарушается вследствие неравномерности солнечного излучения, вызывающей ионосферные возмущения и магнитные бури. В результате энергия коротких радиоволн значительно поглощается, что ухудшает радиосвязь, даже иногда делает ее совсем невозможной. Особенно часто ионосферные возмущения наблюдаются на широтах, близких к полюсам. Поэтому там коротковолновая связь ненадежна.

    Наиболее заметные ионосферные возмущения имеют свою периодичность: они повторяются через 27 суток(время обращения Солнца вокруг своей оси).

    В диапазоне коротких волн сильно сказывается влияние промышленных, атмосферных и взаимных помех.

    Оптимальные частоты связи на коротких волнах выбираются на основе радиопрогнозов, которые делятся на долгосрочные и краткосрочные. В долгосрочных прогнозах указывается ожидаемое среднее состояние ионосферы в течение определенного отрезка времени (месяца, сезона, года и более), тогда как краткосрочные прогнозы составляются на сутки, пятидневку и характеризуют возможные отклонения ионосферы от ее среднего состояния. Прогнозы составляются в виде графиков в результате обработки систематических наблюдений за ионосферой, солнечной активностью и состоянием земного магнетизма.

    Ультракороткие волны (УКВ) от ионосферы не отражаются, они свободно проходят ее, т. е. эти волны не имеют пространственной ионосферной волны. Поверхностная же ультракороткая волна, на которой возможна радиосвязь, имеет два существенных недостатка: во-первых, поверхностная волна не огибает земную поверхность и большие препятствия и, во-вторых, она сильно поглощается в почве.

    Ультракороткие волны широко применяются там, где требуется небольшой радиус действия радиостанции (связь ограничивается обычно пределами прямой видимости). В этом случае связь ведется пространственной тропосферной волной. Она обычно состоит из двух составляющих: прямого луча и луча, отраженного от Земли (рис. 2.9).

    http://cs627426.vk.me/v627426100/3d3b7/s0xgu9ywiie.jpg

    Рис. 2.9 Прямой и отраженный лучи пространственной волны.

    Если антенны расположены достаточно близко, оба луча обычно достигают приемной антенны, но интенсивность их различная. Луч, отраженный от Земли, слабее из-за потерь, происходящих во время отражения от Земли. Прямой луч имеет почти то же самое затухание, что и волна в свободном пространстве. В приемной антенне общий сигнал равен векторной сумме этих двух составляющих.

    Приемная и передающая антенны имеют обычно одну и ту же высоту, так что длина пути отраженного луча немного отличается от прямого луча. Отраженная волна имеет сдвиг по фазе на 180°. Таким образом, пренебрегая потерями в Земле во время отражения, если два луча прошли одно и то же расстояние, векторная сумма их равна нулю, в результате в приемной антенне сигнала не будет.

    В действительности отраженный луч проходит несколько большее расстояние, следовательно, разность фаз в приемной антенне будет около 180°. Разность фаз определяется разностью пути в отношениях длины волны, а не в линейных единицах. Другими словами, общий сигнал, принимаемый при этих условиях, зависит главным образом от используемой частоты. Например, если длина рабочей волны 360 м, а разность пути 2 м, сдвиг фазы будет отличаться от 180° только на 2°. В результате наблюдается почти полное отсутствие сигнала в приемной антенне. Если длина волны 4 м, та же самая разность пути 2 м будет вызывать разность фазы 180°, полностью компенсируя сдвиг фазы 180° при отражении. В этом случае сигнал удваивается по напряжению.

    Из этого вытекает, что при низких частотах использование пространственных волн не представляет интереса для связи. Только на высоких частотах, где разность пути является соизмеримой с используемой длиной волны, пространственная волна широко используется.

    Радиус действия передатчиков УКВ значительно увеличивается при связи самолетов в воздухе и с Землей.

    К преимуществам УКВ следует отнести возможность применения небольших антенн. Кроме того, в диапазоне УКВ может одновременно работать большое число радиостанций без взаимных помех. На участке диапазона волн от 10 до 1 м можно разместить одновременно работающих станций больше, чем в диапазоне коротких, средних и длинных волн вместе взятых.

    Широкое распространение получили ретрансляционные линии, работающие на УКВ. Между двумя пунктами связи, находящимися на большом расстоянии, устанавливается несколько УКВ приемопередатчиков, расположенных в пределах прямой видимости один от другого. Промежуточные станции работают автоматически. Организация ретрансляционных линий позволяет повысить дальность связи на УКВ и осуществить, многоканальную связь (вести одновременно несколько телефонных и телеграфных передач).

    Сейчас уделяется большое внимание использованию УКВ диапазона для дальней радиосвязи.

    Наибольшее применение получили линии связи, работающие в диапазоне 20-80 МГц и использующие явления ионосферного рассеяния. Считалось, что радиосвязь через ионосферу возможна лишь на частотах ниже 30 МГц (длина волны более 10 м), а так как этот диапазон полностью загружен и дальнейшее увеличение числа каналов в нем невозможно, вполне понятен интерес к рассеянному распространению радиоволн.

    Это явление заключается в том, что некоторая часть энергии излучения сверхвысоких частот рассеивается имеющимися в ионосфере неоднородностями. Создаются эти неоднородности воздушными течениями слоев с различными температурой и влажностью, блуждающими заряженными частицами, продуктами ионизации хвостов метеоритов и другими еще малоизученными источниками. Поскольку тропосфера всегда неоднородна, рассеянное преломление радиоволн существует систематически.

    Рассеянное распространение радиоволн подобно рассеянию света прожектора в темную ночь. Чем мощнее световой луч, тем больше он дает рассеянного света.

    При изучении дальнего распространения ультракоротких волн было замечено явление резкого кратковременного повышения слышимости сигналов. Такие всплески случайного характера длятся от нескольких миллисекунд до нескольких секунд. Однако практически они наблюдаются в течение суток с перерывами, редко превышающими несколько секунд. Появление моментов повышенной слышимости объясняется главным образом отражением радиоволн от ионизированных слоев метеоритов, сгорающих на высоте около 100 км. Диаметр этих метеоритов не превышает нескольких миллиметров, а их следы тянутся на несколько километров.

    От метеоритных следов хорошо отражаются радиоволны частотой 50-30 МГц (6-10 м).

    Ежедневно в земную атмосферу влетает несколько миллиардов таких метеоритов, оставляя за собой ионизированные следы с высокой плотностью ионизации воздуха. Это и дает возможность получить надежную работу радиолиний большой протяженности при использовании передатчиков относительно небольшой мощности. Неотъемлемой частью станций на таких линиях является вспомогательное буквопечатающее оборудование, снабженное элементом памяти.

    Поскольку каждый метеоритный след существует всего несколько секунд, передача ведется автоматически короткими сериями.

    В настоящее время широко используются связь и телевизионные передачи через искусственные спутники Земли.

    Таким образом, по механизму распространения радиоволн линии радиосвязи можно классифицировать на линии, использующие:

    процесс распространения радиоволн вдоль земной поверхности с огибанием ее (так называемые земные или поверхностные волны);

    процесс распространения радиоволн в пределах прямой видимости (прямые волны);

    отражение радиоволн от ионосферы (ионосферные волны);

    процесс распространения радиоволн в тропосфере (тропосферные волны);

    отражение радиоволн от метеорных следов;

    отражение или  ретрансляцию от искусственных спутников Земли;

    отражение от искусственно создаваемых образований газовой плазмы или искусственно созданных проводящих поверхностей.

     

    2.4 Особенности распространения радиоволн различных диапазонов

    На условия распространения радиоволн в пространстве между передатчиком и радиоприемником корреспондентов оказывает влияние конечная проводимость земной поверхности и свойства среды над Землей. Это влияние для различных диапазонов волн (частот) различно.

    Мириаметровые и километровые волны (СДВ и ДВ) могут распространяться и как земные, и как ионосферные. Наличие земной волны, распространяющейся на сотни и даже тысячи километров, объясняется тем, что напряженность поля этих волн убывает с расстоянием довольно медленно, так как поглощение их энергии земной или водной поверхностью невелико. Чем длиннее волна и лучше проводимость почвы, тем на большие расстояния обеспечивается радиосвязь.

    В большой степени поглощают электромагнитную энергию песчаные сухие почвы и горные породы. При распространении за счет явления дифракции они огибают выпуклую земную поверхность, встречающиеся на пути препятствия: леса, горы, возвышенности и т.д. Начиная с расстояния 300-400 км от передатчика, появляется ионосферная волна, отраженная от нижней области ионосферы (от слоя D или Е). Днем из-за наличия слоя D поглощение электромагнитной энергии становится более существенным. Ночью, с исчезновением этого слоя, дальность связи увеличивается. Таким образом, прохождение длинных волн ночью, как правило, лучше, чем днем. Глобальные связи на СДВ и ДВ осуществляются волнами, распространяющимися в сферическом волноводе, образованном ионосферой и земной поверхностью.

    Преимущество СДВ-, ДВ- диапазона:

    радиоволны СДВ- и ДВ-диапазона обладают свойством проникать в толщу воды, а также распространяться в некоторых структурах почвы;

    за счет волн, распространяющихся в сферическом волноводе Земли, обеспечивается связь на тысячи километров;

    дальность связи мало зависит от ионосферных возмущений;

    хорошие дифракционные свойства радиоволн этих диапазонов позволяют обеспечивать связь на сотни и даже тысячи километров земной волной;

    постоянство параметров радиолинии обеспечивает стабильный уровень сигнала в точке приема.

    Недостатки СДВ-,ДВ,- диапазона:

    эффективное излучение волн рассматриваемых участков диапазона может достигаться лишь с помощью весьма громоздких антенных устройств, размеры которых соизмеримы с длиной волны. Строительство и восстановление антенных устройств таких размеров в ограниченное время (в военных целях) затруднительно;

    поскольку размеры реально выполняемых антенн меньше длины волны, то компенсация пониженной их эффективности достигается увеличением мощности передатчиков до сотен и более кВт;

    создание резонансных систем в этом диапазоне и при значительных мощностях определяет большие размеры выходных каскадов: передатчиков, сложность быстрой перестройки на другую частоту;

    для электропитания радиостанций СДВ- и ДВ-диапазонов) требуются большие мощности электростанций;

    существенным недостатком СДВ- и ДВ-диапазонов является их небольшая частотная емкость;

    достаточно большой уровень промышленных и атмосферных помех;

    зависимость уровня сигнала в точке приема от времени суток.
    1   2   3   4


    написать администратору сайта