Главная страница
Навигация по странице:

  • Защита от ионизирующих и электромагнитных излучений высотных ядерных взрывов (ВЯВ)

  • Характерные признаки ВЯВ

  • 2.5.3 Основные определения: отраженная радиоволна

  • Документ Microsoft Word. Радиочастотный диапазон и его использование для радиосвязи 1 Основы распространения радиоволн


    Скачать 446.46 Kb.
    НазваниеРадиочастотный диапазон и его использование для радиосвязи 1 Основы распространения радиоволн
    Дата17.01.2019
    Размер446.46 Kb.
    Формат файлаdocx
    Имя файлаДокумент Microsoft Word.docx
    ТипДокументы
    #64118
    страница4 из 4
    1   2   3   4

    Электромагнитный импульс (пятый поражающий фактор ядерного взрыва) при отсутствии специальных мер защиты может повреждать аппаратуру управления и связи, нарушать работу электрических устройств, подключенных к протяженным наружным линиям.

    Наиболее подвержены воздействию электромагнитного импульса ядерного взрыва системы связи, сигнализации и управления. В результате воздействия ЭМИ наземного или воздушного ядерного взрыва на антенны радиостанций в них наводится электрическое напряжение, под действием которого может происходить пробой изоляции, трансформаторов, плавление проводов, выход из строя разрядников, порча электронных ламп, полупроводниковых приборов, конденсаторов, сопротивлений и т. п.

    Установлено, что при воздействии ЭМИ на аппаратуру наибольшее напряжение наводится на входных цепях, В отношении транзисторов наблюдается такая зависимость: чем выше коэффициент усиления транзистора, тем меньше его электрическая прочность.

    Радиоаппаратура имеет электрическую прочность по постоянному напряжению не более 2-4 кВ. Учитывая, что электромагнитный импульс ядерного взрыва является кратковременным, предельную электрическую прочность аппаратуры без средств защиты можно считать более высокой ‒ примерно 8-10 кВ.

    В табл. 1 приведены ориентировочные расстояния (в км), на которых в антеннах радиостанций в момент ядерного взрыва наводятся опасные для аппаратуры напряжения, превышающие 10 и 50 кВ.

     

    Таблица 1

    Мощность взрыва, (тыс.т)

    Наводимое напряжение, (кВ)

    более 10

    более 50

    1

    2

    1

    10

    2,5

    1,3

    100

    3

    1,5

    1000

    3,3

    1,7

     

    Hа бȍльших расстояниях воздействие ЭМИ оказывается аналогичным воздействию не очень далекого разряда молнии и не вызывает повреждения аппаратуры.

    Воздействие электромагнитного импульса на радиоаппаратуру резко снижается в случае применения специальных мер защиты.

    Наиболее аффективным способом зашиты радиоэлектронной аппаратуры, расположенной в сооружениях, является использование электропроводящих (металлических) экранов, которые в значительной мере снижают величины напряжений, наводимых на внутренних проводах и кабелях. Применяются средства защиты, аналогичные грозозащитным средствам: разрядники с дренажными и запирающими катушками, плавкие вставки, развязывающие устройства, схемы автоматического отключения аппаратуры от линии.

    Хорошей защитной мерой является также надежное заземление аппаратуры в одной точке. Эффективно и выполнение радиотехнических устройств поблочно, с зашитой каждого блока и всего устройства в целом. Это дает возможность быстро сменить вышедший из строя блок резервным (в наиболее ответственной аппаратура проводится дублирование блоков с автоматическим переключением их при повреждении основных). В некоторых случаях дли защиты от ЭМИ можно использовать селеновые элементы и стабилизаторы.

    Кроме того, могут быть применены защитные входные приспособления, которые представляют собой различные релейные или электронные устройства, реагирующие на превышение напряжения в цепи. При приходе импульса напряжения, наведенного в линии электромагнитным импульсом, они отключают питание от аппарата или просто разрывают рабочие цепи.

    При выборе защитных устройств, следует учитывать, что воздействие ЭМИ характеризуется массовостью, то есть одновременным срабатыванием защитных средств во всех цепях, оказавшихся в районе взрыва. Поэтому применяемые схемы защиты должны автоматически восстанавливать работоспособность цепей немедленно после прекращения действия электромагнитного импульса.

    Устойчивость аппаратуры к воздействию напряжения, возникающих в линиях при ядерном взрыве, в большой степени зависит от правильной эксплуатации линии и тщательного контроля исправности средств защиты.

    К важным требованиям эксплуатации относится периодическая и своевременная проверка электрической прочности изоляции линии и входных цепей аппаратуры, своевременное выявление и устранение возникших заземлений проводов, контроль за исправностью разрядников, плавких вставок и т. п.

    Высотный ядерный взрыв сопровождается образованием областей повышенной ионизации. При взрывах на высотах примерно до 20 км ионизированная область ограничивается сначала размерами светящейся области, а затем облаком взрыва. На высотах 20-60 км размеры ионизированной области несколько больше размеров облака взрыва, особенно у верхней границы этого диапазона высот.

    При ядерных взрывах на больших высотах в атмосфере возникают две области повышенной ионизации.

    Первая область образуется в районе взрыва за счет ионизированного вещества боеприпаса и ионизации воздуха ударной волной. Размеры этой области в горизонтальном направлении достигают десятков и сотен метров.

    Вторая область повышенной ионизации возникает ниже центра взрыва в слоях атмосферы на высотах 60-90 км в результате поглощения воздухом проникающих излучений. Расстояния, на которых проникающие излучения производят ионизацию, в горизонтальном направлении составляют сотни и даже тысячи километров.

    Области повышенной ионизации, возникающие при высотном ядерном взрыве, поглощают радиоволны и изменяют направление их распространения, что приводит к существенному нарушению работы радиосредств. При этом возникают перебои в радиосвязи, а в некоторых случаях она нарушается полностью.

    Характер поражающего действия электромагнитного импульса высотных ядерных взрывов в основном аналогичен характеру поражающего действия ЭМИ наземных и воздушных взрывов.

    Меры защиты от поражающего действия электромагнитного импульса высотных взрывов такие же, как и от ЭМИ наземных и воздушных взрывов.

     

     

    2.5.1 Защита от ионизирующих и электромагнитных излучений

    высотных ядерных взрывов (ВЯВ)

    Помехи РС могут возникать вследствие взрывов ядерных боеприпасов, сопровождающихся излучением мощных электромагнитных импульсов малой длительности (10-8 сек) и изменением электрических свойств атмосферы.

    ЭМИ (радиовспышка) возникает:

    во-первых, в результате асимметричного расширения облака электрических разрядов, образующихся под воздействием ионизирующих излучений взрывов;

    во-вторых, за счет быстрого расширения хорошо проводящего газа (плазмы), образующегося из продуктов взрыва.

    После взрыва в космосе создается огненный шар, который представляет собой сильно ионизированную сферу. Эта сфера быстро расширяется (со скоростью порядка 100-120 км/ч) над земной поверхностью, преобразуясь в сферу ложной конфигурации, толщина сферы достигает 16-20 км. Концентрация электронов в сфере может доходить до 105-106 электр./см3, т. е. в 100-1000 раз превышать нормальную концентрацию электронов в ионосферном слое D.

    Высотные ядерные взрывы (ВЯВ) на высотах больше 30 км существенным образом влияют на больших пространствах в течение продолжительного времени на электрические характеристики атмосферы, и, следовательно, оказывают сильное влияние на распространение радиоволн.

    Кроме того, возникающий при ВЯВ мощный электромагнитный импульс индуцирует в проводных линиях связи большие напряжения (до 10 000-50 000 В) и токи до нескольких тысяч ампер.

    Мощность ЭМИ настолько велика, что его энергии достаточно для проникновения в толщу земли до 30 м и наведения ЭДС в радиусе до 50-200 км от эпицентра взрыва.

    Однако основное воздействие ВЯВ состоит в том, что выделившееся про взрыве огромное количество энергии, а также интенсивные потоки нейтронов, рентгеновских, ультрафиолетовых и гамма – лучей приводят к образованию в атмосфере сильно ионизированных областей и повышению плотности электронов в ионосфере, что в свою очередь, ведет к поглощению радиоволн и нарушению устойчивости функционирования системы управления.

     

    2.5.2 Характерные признаки ВЯВ

    ВЯВ в данном районе или вблизи него сопровождается мгновенным прекращением приема дальних станций в КВ диапазоне волн.

    В момент прекращения связи в телефонах наблюдается короткий щелчок, а затем прослушиваются только собственные шумы приемника и слабые трески типа громовых разрядов.

    Через несколько минут после прекращения связи на КВ резко возрастают помех от дальних станций в метровом диапазоне волн на УКВ.

    Уменьшается дальность действия РЛС и точность измерения координат.

    В основе защиты электронных средств лежит правильное использование частотного диапазона и всех факторов, которые возникают в результате применения ВЯВ

     

     

     

     

     

     

    2.5.3 Основные определения:

    отраженная радиоволна (отраженная волна) – радиоволна, распространяющаяся после отражения от поверхности раздела двух сред или от неоднородностей среды;

    прямая радиоволна (прямая волна) – радиоволна, распространяющаяся непосредственно от источников к месту приема;

    земная радиоволна (земная волна) – радиоволна, распространяющаяся вблизи земной поверхности и включающая прямую волну, волну, отраженную от земли, и поверхностную волну;

    ионосферная радиоволна (ионосферная волна) – радиоволна, распространяющаяся в результате отражения от ионосферы или рассеяния на ней;

    поглощение радиоволн (поглощение) – уменьшение энергии радиоволны вследствие частичного перехода ее в тепловую энергию в результате взаимодействия со средой;

    многолучевое распространение радиоволн (многолучевое распространение) – распространение радиоволн от передающей к приемной антенне по нескольким траекториям;

    действующая высота отражения слоя (действующая высота) – гипотетическая высота отражения радиоволны от ионизированного слоя, зависящая от распределения электронной концентрации по высоте и длине радиоволны, определяемая через время между передачей и приемом отраженной ионосферной волны при вертикальном зондировании в предположении, что скорость распространения радиоволны на всем пути равна скорости света в вакууме;

    ионосферный скачок (скачок) – траектория распространения радиоволны одной точки на поверхности Земли к другой, прохождение по которой сопровождается одним отражением от ионосферы;

    максимальная применимая частота (МПЧ) – наивысшая частота радиоизлучения, на которой существует ионосферное распространение радиоволн между заданными пунктами в заданное время в определенных условиях, это частота, которая еще отражается от ионосферы;

    оптимальная рабочая частота (ОРЧ) – частота радиоизлучения ниже ПЧ, на которой может осуществляться устойчивая радиосвязь в определенных геофизических условиях. Как правило, ОРЧ ниже МПЧ на 15%;

    вертикальное ионосферное зондирование (вертикальное зондирование) – ионосферное зондирование при помощи радиосигналов, излучаемых вертикально вверх относительно поверхности Земли при условии, что точки излучения и приема совмещены;

    ионосферное возмущение – нарушение в распределении ионизации в слоях атмосферы, которое превосходит обычно изменения средних характеристик ионизации для данных географических условий;

    ионосферная буря – продолжительное ионосферное возмущение большой интенсивности.
    1   2   3   4


    написать администратору сайта