курсовая работа. ЗИП-18-2рс Джумашева А. Расчёт проточной части цилиндра среднего давления теплофикационной паровой турбины т180210130 по дисциплине
Скачать 0.64 Mb.
|
|
| Введение | 3 |
1 | Аналитическая часть | 4 |
2 | Основная часть | 6 |
2.1 | Технологическая схема турбинной установки и ее характеристика | 6 |
2.2 | Определение термодинамических параметров в основных точках цикла | 7 |
2.3 | Тепловые расчеты турбины | 9 |
2.4 | Построение диаграммы режимов работы турбины | 13 |
2.5 | Тепловой расчет промежуточной ступени турбины | 19 |
2.6 | Определение энергетической эффективности цикла | 21 |
3 | Заключение | 24 |
| Список литературы | 25 |
| Приложение | |
| | |
ВВЕДЕНИЕ
Современная энергетика основывается на централизованной выработке электроэнергии. Генераторы электрического тока, устанавливаемые на электрических станциях, в подавляющем большинстве приводятся паровыми турбинами. Доля электроэнергии, производимой в нашей стране тепловыми и атомными электростанциями, где применяются паровые турбины составляет 85 – 90 %.
Таким образом, паровая турбина является основным типом двигателя на современной тепловой электростанции и в том числе на атомной. Паровая турбина получила также широкое распространение в качестве двигателя для кораблей военного и гражданского флота. Паровые турбины применяются, кроме того, для привода различных машин – насосов, газодувок и др.
Использование в энергетике другой тепловой турбины – газовой – не привело к вытеснению паровых турбин. Собственно газовые турбины нашли применение как пиковые агрегаты, работающие в течении года относительно мало времени. В суммарной выработке электроэнергии они занимают небольшую долю, не превышающую 1 – 2 %. В то же время комбинация газовой и паровой турбины, так называемые парогазовые установки, весьма перспективны, имеют наивысший КПД теплосилового цикла, т. е. производство электроэнергии с минимальным расходом топлива. В настоящее время ПГУ интенсивно разрабатываются, занимая всё большее место в энергетике.
Для большинства альтернативных способов преобразования энергии, паровая турбина также необходима для вращения генератора.
Паровая турбина, обладающая большой быстроходностью, отличается сравнительно малыми размерами и массой и может быть построена на очень большую мощность (1000 МВт и выше). Вместе с тем у паровой турбины исключительно хорошие технико-экономические характеристики: высокая экономичность, относительно небольшая удельная стоимость, надёжность и ресурс работы, составляющий десятки лет.
В данной курсовой работе был произведен расчёт проточной части цилиндра среднего давления теплофикационной паровой турбины Т-180/210-130
Целью курсового проекта является расчёт проточной части цилиндра среднего давления теплофикационной паровой турбины Т-180/210-130, определение расходов пара на турбину и её КПД при номинальной мощности.
В ходе расчёта курсового проекта был рассчитан ЦСД паровой турбины Т-180/210-130, а так же определены КПД и мощность этого цилиндра при расчётном режиме работы.
Аналитическая часть
Теплофикационная паровая турбина с отопительным отбором пара Т-180/210-130-1 производственного объединения турбостроения «Ленинградский металлический завод» (ПОТ ЛМЗ) номинальной мощностью 180 МВт с начальным давлением пара 12,8 МПа предназначена для непосредственного привода электрического генератора ТГВ-200М с частотой вращения ротора 50 1/с и отпуска тепла для нужд отопления.
Турбина имеет два отопительных отбора пара – верхний и нижний, предназначенные для ступенчатого подогрева сетевой воды.
Отопительные отборы имеют следующие пределы регулирования давления: верхний 0,059 – 0,196 МПа, нижний 0,049 – 0,147 МПа. Регулирование давления в отопительных отборах поддерживается: в верхнем – при включенных двух отопительных отборах, в нижнем – при включенном одном нижнем отопительном отборе.
Расход воды, проходящей через сетевые подогреватели, должен контролироваться.
Минимальное расчетное количество пара, поступающего в конденсатор при номинальном режиме, включенных сетевых подогревателях верхней и нижней ступени подогрева при давлении в верхнем отопительном отборе 0,098 МПа составляет примерно30 т/ч. Максимальный расход пара в конденсатор на конденсационном режиме при температуре охлаждающей воды 27 ºС составляет 461 т/ч.
Номинальная суммарная тепловая нагрузка отопительных отборов, равная 1,09 ТДЖ/ч, обеспечивается при номинальных параметрах свежего пара, расходе охлаждающей воды через конденсатор с ее расчетной температурой на входе в количестве не менее 11000 м³/ч при полностью включенной регенерации и количестве питательной воды, подогреваемой в ПВД, равном 100% расхода пара на турбину; при работе турбоустановки со ступенчатым подогревом сетевой воды в сетевых подогревателях; при полном использовании пропускной способности турбины и минимальном пропуске пара в конденсатор.
Мощность турбины при этом зависит от температуры подогрева сетевой воды и составляет: 185 МВт при подогреве от 41 до 85 ºС; 180 МВт при подогреве от 51 до 95 ºС; 177 МВт при подогреве от 61 до 105 ºС.
Максимальная тепловая нагрузка с учетом подогрева подпиточной воды в конденсаторе равна 1,13 ГДж/ч.
Максимальная расчетная температура сетевой воды при расходе свежего пара 670 т/ч на выходе из подогревателя сетевой воды верхнего отопительного отбора (ПСГ-2) составляет примерно 118 ºС.
Турбина имеет семь нерегулируемых отборов, предназначенных для подогрева питательной воды ПНД, в деаэраторе, в ПВД.
Максимальная электрическая мощность турбины обеспечивается при номинальных параметрах свежего пара и пара промежуточного перегрева, полностью включенной регенерации, выключенных отопительных и дополнительных отборах пара, чистой проточной части, расходе охлаждающей воды, равном 22000 м³/ч, и расчетной температуре охлаждающей воды 27 ºС Т-180/210-130-1 и 20 ºС для турбины Т-180/215-130-2.
Кроме регенеративных отборов, допускаются дополнительные отборы за счет снижения мощности и тепловой нагрузки.
Предусматривается возможность работы турбо-установки с пропуском подпиточной воды через встроенный пучок конденсатора.
Допускается кратковременная непрерывная работа турбины не более 30 мин при отклонениях параметров от номинальных.
При достижении этих значений в любых сочетаниях суммарная продолжительность работы турбины при этих параметрах не должна превышать 200 ч в год.
Одновременный пропуск подпиточной воды через встроенный пучок и циркуляционной воды через основную поверхность конденсатора возможен при разности температур подпиточной и циркуляционной воды на входе не более 20 ºС.
Допускается работа турбины в открытых системах теплоснабжения с подогревом сетевой воды во встроенном пучке конденсатора.
Расход пара на холостом ходу составляет 30 т/ч. Турбина может работать на холостом ходу после сброса нагрузки до 15 мин при условии охлаждения конденсатора циркуляционной водой, проходящей через основную поверхность конденсатора и при полностью открытых регулирующих диафрагмах.
Конструкция турбины. Турбина представляет собой одновальный агрегат, выполненный по схеме: 1ЦВД+1ЦСД+1ЦНД.
ЦВД состоит из 12 ступеней левого вращения, первая из которых – регулирующая, ЦСД – из 11 ступеней правого вращения. ЦНД – двухпоточный, имеет по четыре ступени в каждом потоке левого и правого вращения, третья ступень является регулирующей.
Ротор высокого давления – цельнокованый. В роторе среднего давления первые семь ступеней откованы заодно с валом, четыре последних – насадные. Ротор низкого давления состоит из вала, на котором насажены восемь дисков.
Роторы высокого и среднего давлений соединены между собой жестко с помощью муфт, откованных заодно с роторами, и имеют средний подшипник (опорно-упорный). Роторы среднего и низкого давлений и генератора соединены жесткими муфтами. Роторы турбины выполнены гибкими.
Регулирование в данных турбинах – сопловое. Свежий пар подводится к двум, отдельно стоящим стопорным клапанам, из которых пар поступает по перепускным трубам в четыре паровые коробки регулирующих клапанов, вваренные в переднюю часть ЦВД.
Паровпуск ЦВД находится со стороны среднего подшипника. После ЦВД пар направляется в промежуточный перегреватель, а затем возвращается в турбину через стопорные и регулирующие клапаны ЦСД. Регулирующие клапаны ЦСД установлены непосредственно на цилиндре.
После ЦСД часть пара идет в верхний отопительный отбор, остальная часть по двум перепускным трубам поступает в двухпоточный ЦНД. Пройдя две ступени ЦНД в каждом потоке, часть пара идет в нижний отопительный отбор, остальная часть направляется на последующие две ступени левого и правого потоков, а затем в конденсатор.
В камере нижнего отопительного отбора за 2-й ступенью левого и правого потоков установлены две регулирующие диафрагмы с поворотными кольцами, которые регулируют пропуск пара через 3-ю и 4-ю ступени ЦНД.
Конструкция ЦНД одинакова для обеих модификаций турбины; в ней меняется только длина лопаток в последней ступени.
Фикспункт турбины расположен на боковых рамах передней части ЦНД.
Турбина снабжена валоповоротным устройством, вращающим ротор турбины с частотой вращения 3,4 об/мин. Привод валоповоротного устройства – электрический с автоматическим пуском со щита управления.
Пуск турбины на скользящих параметрах пара допускается из холодного и различной степени неостывшего состояний.
Для сокращения времени прогрева турбины и улучшения условий пуска предусматривается паровой обогрев фланцев и шпилек горизонтального разъема и подвод свежего пара на переднее уплотнение ЦВД и ЦСД.
Лопаточный аппарат турбины рассчитан на работу при частоте тока в сети 50 Гц, что соответствует частоте вращения ротора генератора 3000 об/мин.
Допускается длительная работа турбины с номинальной мощностью при отклонении частоты тока в сети в пределах 49-60,5 Гц
Регулирование и защита. Турбина имеет электрогидравлическую САР, а также устройства защиты, обеспечивающие работу и останов турбины при возникновении аварийных нарушений режима ее работы. САР поддерживает частоту вращения ротора турбогенератора и давление в регулируемом отборе пара воздействием регуляторов скорости и давления на органы паровпуска – регулирующие клапаны ЦВД и повортные диафрагмы ЦНД турбины.
Предусматривается возможность работы турбины в следующих режимах: конденсационном; с обеспечением автономности поддержания нагрузки и давления в регулируемом отборе пара; работы по тепловому графику с фиксированным положением поворотной диафрагмы и работы по тепловому графику с возможностью пропуска пара в конденсатор для поддержания заданной температуры охлаждающей воды, поступающей в трубную систему конденсатора.
Управление регуляторами скорости, давления и сервомоторами паровпускных органов осуществляется посредством последовательных гидравлических усилителей.
Бесшарнирный регулятор скорости всережимного действия, расположенный на оси ротора турбины, поддерживает частоту вращения с неравномерностью около 4 % от номинальной.
Механизм управления турбиной (МУТ) используется: для зарядки органов защиты от повышения частоты вращения, для управления сервомоторами автоматических затворов и органами паровпуска, изменения частоты вращения и нагрузки. С помощью единого органа – механизма управления, имеющего как ручной, так и дистанционный привод, производится управление турбиной при пуске, синхронизация генератора при любой аварийной частоте в системе, изменение нагрузки, а также испытание регулятора безопасности повышением частоты вращения.
Регулятор давления сильфонной конструкции имеет механизм управления ручного и дистанционного действия для изменения величины давления в камере регулируемых теплофикационных отборов: верхний – 0,059–0,196 МПа, нижний 0,49–0,147 МПа. Имеются дистанционный указатель положения механизма управления и конечные выключатели для сигнализации о его крайних положениях. Связанность и автономность регулирования осуществляются в специальном органе – суммирующих золотниках.
При работе по тепловому графику сильфонный регулятор давления отключается, и давление в отборе поддерживается электронным регулятором давления, действующим на электродвигатель МУТ.
С помощью сервомотора поворотных диафрагм меняется положение диафрагм на требуемый режим работы турбины.
ЭЧСР состоит из двух устройств: электроприставки и регулятора мощности.
В электроприставке имеются блоки, обеспечивающие форсированное закрытие органов паровпуска турбины при сбросе нагрузки воздействием через электрогидравлический преобразователь, в результате чего повышается максимальная частота вращения ротора после мгновенного сброса нагрузки с генератора не более, чем до 109 % от номинального значения. Кроме того, в электроприставке имеются блоки, формирующие импульсы, необходимые для кратковременной разгрузки турбины по сигналам противоаварийной автоматики энергосистем, а также быстродействующий ограничитель, поддерживающий заданную в послеаварийном режиме мощность и использующий обратную связь по мощности турбины.
Регулятор, воздействующий на электродвигатель механизма управления турбиной, поддерживает заданную мощность турбины при постоянной частоте и с учетом отклонения давления свежего пара от номинального значения. Система поддерживает давление не ниже минимально допустимой величины. Степень неравномерности регулирования частоты вращения составляет (4,5±0,5) %. Регулятор мощности дает возможность изменять статизм от 2,5 до 6 %. Нечувствительность гидравлической части системы регулирования частоты вращения составляет не более 0,3 %. Путем корректирующего воздействия регулятора мощности обеспечивается уменьшение нечувствительности всей системы регулирования до 0,06 %.
Для защиты турбины от недопустимого возрастания частоты вращения имеется регулятор безопасности, у которого два центробежных бойка астатически срабатывают при достижении частоты вращения в пределах (111–112) %. Кроме того, имеется дополнительная защита на блоке золотников регулятора скорости, срабатывающая при повышении частоты вращения до 114,5 % от номинальной. Испытание бойков может производиться как повышением частоты вращения, так и без него – подводом масла. Посадка бойков происходит при частоте вращения выше 101 % от номинальной (50 с –1).
Сервомоторы автоматических затворов свежего пара и пара после промежуточного перегрева имеют приспособления для испытания каждого из них поочередно на частичное и полное закрытия с помощью имеющегося ограничителя мощности в особых случаях эксплуатации может быть ограничено открытие клапанов свежего пара.
Имеются дублирующие друг друга два электромагнитных выключателя (ЭМВ), срабатывающих от защит турбогенератора, блока и от ключа на щите управления. ЭМВ расположены на турбине и имеют кнопки ручного отключения турбины, которые быстро закрывают сервомоторы автоматических затворов и регулирующих органов паровпуска. Воздействие бойков дополнительной защиты и ЭМВ производится на двух дублирующих друг друга золотниках регулятора безопасности.
При закрытии сервомоторов автоматических затворов отключается генератор и принудительно закрываются обратные клапаны на линиях отборов.
Система контроля и управления турбиной обеспечивает: контроль параметров работы оборудования, определяющих надежность и эффективность эксплуатации турбоустановки; регистрацию основных параметров, знание которых необходимо для последующего анализа работы оборудования и тенденцию изменения которых необходимо знать в процессе управления установкой; аварийную, предупредительную и технологическую сигнализации; дистанционное управление оборудованием турбоустановки во всех режимах пуска, останова и работы под нагрузкой; автоматическую стабилизацию ряда параметров работы и поддержания заданных значений, постоянно требующихся в процессе эксплуатации, автоматическую защиту турбины и вспомогательного оборудования.
Управление турбинным оборудованием централизовано и ведется из помещения блочного управления. На местах предусматривается выполнение только отдельных подготовительных операций перед пуском турбины и различных наладочных работ, а также периодический осмотр работающего оборудования обходчиком.
Система контроля и управления выполняется на базе современных электрических приборов и аппаратуры.