Аналитика. 2004_Курносов ЮВ, Конотопов ПЮ_Аналитика_3,9 Mb. Рецензенты
Скачать 3.9 Mb.
|
анализ. 164 Наиболее широкое распространение логические модели получили в области построения систем искусственного интеллекта, где они используются в качестве основы для производства логического вывода из системы посылок, зафиксированных в базе знаний, в ответ на внешний запрос. Ограничения, связанные со спецификой предметной области (нечеткость и неполнота экспертных знаний) привели к тому, что в последние годы в отрасли построения систем искусственного интеллекта приобрели особую популярность квазиаксиоматические логические системы (подход, развиваемый отечественным ученым Д.А. Поспеловым). Такие логические системы заведомо неполны и для них не выполняется полный комплекс требований, характерных для классических (аксиоматических) систем. Более того — для большинства логических высказываний, образующих такую систему, задается область определения, в пределах которой эти высказывания сохраняют свою значимость, а все множество высказываний, на основе которых осуществляется анализ, делится на общезначимые высказывания (справедливые для всей модели) и высказывания, имеющие значимость лишь в рамках локальной системы аксиом. Те же причины (неполнота и нечеткость экспертных знаний) сделали популярными такие направления логики, как многозначные логики (первые работы в этой области принадлежат польским ученым Я. Лукасевичу и А. Тарскому 1920-30-е годы), вероятностные логики и нечеткие логики (Fuzzy Logic — автор теории Л. Заде — 1960-е годы). Этот класс логик активно используется при синтезе логических моделей для систем искусственного интеллекта, предназначенных для ситуационного анализа. Поскольку большинство знаний и понятий, используемых человеком, нечетко, Л. Заде предложил для представления таких знаний математическую теорию нечетких множеств, позволяющую оперировать такими «интересными» множествами, как множество спелых яблок или множество исправных автомобилей. На таких вот интересных множествах были определены операции нечеткой логики. Системы, использующие модели на базе нечеткой логики разрабатываются специально для решения плохо определенных задач и задач с использованием неполной и недостоверной информации. Внедрение аппарата нечетких логик в технологии создания экспертных систем привело к созданию нечетких экспертных систем (Fuzzy Expert Systems). Нечеткие логики стали особенно популярны в последние годы, когда Министерство Обороны США всерьез приступило к финансированию исследований в этой области. Сейчас в мире наблюдается всплеск интереса к аналитическим программным продуктам, созданных с применением методов нечетких логик и нечетких логических моделей. Правда, логическими эти модели назвать уже трудно — в них широко используются многозначные 165 вероятностные отношения меры и принадлежности взамен традиционного математического аппарата бинарной логики. Нечеткая логика позволяет решать широкий класс задач, не поддающихся строгой формализации — методы нечеткой логики используются в системах управления сложными техническими комплексами, функционирующими в непредсказуемых условиях (летательными аппаратами, системами наведения высокоточного оружия и т. д.). Многие зарубежные аналитические технологии, в силу действия экспортных ограничений, на российские рынки не поставляются, а инструментальные средства для самостоятельной разработки приложений являются ноу-хау фирм производителей — экономически выгоднее поставлять готовые приложения, чем создавать себе армию конкурентов (тем более в странах с «дешевыми» мозгами). По существу логические модели представляют собой последний этап формализации, на котором в качестве элементов высказывания еще могут выступать понятия, сформулированные на языке человеческого общения. Но как мы видели в логические методы уже активно вмешиваются элементы формальных систем, речь о которых пойдет далее. 2.6 СТАТИСТИЧЕСКИЕ, ТЕОРЕТИКО-ВЕРОЯТНОСТНЫЕ МОДЕЛИ Статистические и теоретико-вероятностные методы составляют методологическую основу одноименного вида моделирования. На этом уровне формализации модели речь о вскрытии закона, обеспечивающего устранение неопределенности при принятии решения, пока еще не идет, но существует некоторый массив наблюдений за данной системой или ее аналогом, позволяющих сделать некие выводы относительно прошлого/текущего/будущего состояния системы, основываясь на гипотезе об инвариантности ее поведения. Как всегда, сформулируем определение… Статистическая или теоретико-вероятностная модель (стохастическая модель) — это модель, в которой обеспечивается учет влияния случайных факторов в процессе функционирования системы, основанная на применении статистической или теоретико-вероятностной методологии по отношению к повторяющимся феноменам. Данная модель оперирует количественными критериями при оценке повторяющихся явлений и позволяет учитывать их нелинейность, динамику, случайные возмущения за счет выдвижения на основе анализа результатов наблюдений гипотез о характере распределения некоторых случайных величин, сказывающихся на поведении системы. По существу, теоретико-вероятностные и статистические модели отличаются уровнем неопределенности знаний о моделируемой системе, существующей на момент синтеза модели. В случае, когда представления о 166 системе носят, скорее, теоретический характер и основываются исключительно на гипотезах о характере системы и возмущающих воздействий, не подкрепленных результатами наблюдений, теоретико-вероятностная модель является единственно возможной. Когда же на этапе синтеза модели уже существуют данные, полученные опытным путем, появляется возможность подкрепления гипотез за счет их статистической обработки. Это становится очевидным, если рассмотреть соотношение между методами математической статистики и теории вероятностей. Математическая статистика — это наука, изучающая методы вскрытия закономерностей, свойственных большим совокупностям однородных объектов или событий, на основании их выборочного обследования (либо большим массивам данных, полученных в результате наблюдения за одним и тем же объектом на протяжении достаточно протяженного интервала времени). Теория же вероятностей изучает количественные закономерности, которым следуют случайные явления, если эти явления определяются событиями известной вероятности. Соответственно, математическая статистика является связующим звеном между теорией вероятностей и явлениями реального мира, поскольку позволяет сформулировать оценки вероятности тех или иных событий на основе анализа статистических данных. Можно утверждать, что статистические модели представляют собой особый вид математических моделей, использующих в качестве исходных данных не только актуальные данные о текущем состоянии объекта, но и данные, характеризующие состояние либо других объектов данного класса, либо этого объекта, но в иной момент времени. Статистические модели применимы для изучения массовых явлений любой природы, включая и те, которые не относятся к категории вероятностно определенных (математическая статистика приспособлена и для решения детерминированных задач). При моделировании последних статистический процесс вводится в модель искусственно для получения статистических оценок численного решения (например, точности измерения параметров детерминированного процесса). Методы математической статистики и теории вероятности могут вводиться, в том числе, и в логические и логико-лингвистические модели, как это было указано в предыдущем подразделе. Например, могут рассматриваться методы интеграции статистических оценок в модели семантических отношений для придания различных весов дугам, связывающим отдельные вершины. Статистические оценки могут быть внедрены и в системы представления тезаурусов для разрешения ситуаций полисемии без обращения к процедурам контекстного анализа. Иными словами, статистические методы могут составлять как основу модели, так и применяться для модификации моделей других типов. 167 Для обработки результатов наблюдений используются методы корреляционного, регрессионного, факторного, кластерного и иных видов анализа, оперирующих статистическими гипотезами. Особая роль здесь отводится методу статистических испытаний (методу Монте-Карло). Это метод численного решения математических задач, основанный на многократном теоретико-вероятностном и статистическом моделировании случайных величин или процессов с целью построения статистических оценок для искомых величин. Сущность метода состоит в реализации многократного моделирования случайного явления с помощью некоторой процедуры, дающей случайный результат. Для этого с применением ЭВМ создается некоторое множество реализаций случайных процессов, моделирующих возмущающие воздействия на исследуемый объект или процесс, после чего производится моделирование этого процесса или объекта в условиях, определяемых полученными случайными воздействиями. Результаты такого моделирования обрабатывают с использованием методов математической статистики. При этом могут варьироваться тип и параметры распределения случайной величины. Реализация случайного процесса методом Монте-Карло представляет собой последовательность розыгрышей единичных жребиев, перемежающихся обычными расчетами, в ходе которых определяется результат возмущающего воздействия на объект или процесс, на исход операции. Поскольку адекватность модели распределения случайных воздействий в общем случае установить трудно, задачей моделирования с применением метода Монте-Карло является обеспечение робастности полученных решений (устойчивости к изменению параметров закона распределения случайных величин и начальных условий моделирования). Если результат моделирования не является робастным (существенно зависит от параметров закона распределения и параметров модели), то это свидетельствует о наличии высокого риска при принятии решения в данной реализации моделируемой системы. Важную роль в статистических моделях играют гипотезы о характере процессов смены состояний в моделируемой системе. Так, например, весьма интересный случай представляет собой гипотеза о «марковости» процессов (получившая название в честь русского ученого А.А. Маркова — начало XX века). Марковские процессы представляют собой случай процесса с детерминированными вероятностями, для которого ранняя предыстория смены состояний системы на некотором предшествующем интервале времени несущественна для установления вероятности наступления следующего события — основное значение придается ее текущему состоянию. Если существует уверенность в марковости процесса, это существенно меняет представления о системе (она может рассматриваться как «инерционная», в большой степени зависящая от текущего ее состояния и 168 характера возмущающего воздействия). Принцип марковости был открыт при анализе текстов на естественных языках, где вероятность появления следующего символа может быть предсказана на основе статистического анализа текстовых массивов, на данном конкретном языке. Статистическое моделирование тесно сопряжено с имитационным моделированием, ходе которого модель объекта нередко «погружается в вероятностную (статистическую) среду», в которой проигрываются различные ситуации и режимы функционирования модели/объекта. Однако имитационные модели могут реализовываться и в детерминированных средах. Методы статистического моделирования широко распространены в сфере стратегического планирования и управления. Широкому распространению методов статистического моделирования в сфере оперативного управления препятствует высокая трудоемкость процесса моделирования. В основном это связано с необходимостью глубокой математической проработки моделей и высокими требованиями, предъявляемыми к математическим познаниям пользователей. 2.7 АНАЛИТИЧЕСКИЕ МОДЕЛИ Данный класс моделей обладает высочайшей степенью формализации описаний и применяется там, где закономерности протекания процессов и функционирования системы являются хорошо изученными, а сами процессы могут рассматриваться как детерминированные. Нередко аналитические модели справедливо отождествляются с моделями детерминированных процессов. Такие ограничения являются достаточно жесткими, что ограничивает сферу их применения системами, функционирующими в стационарных условиях (т. е. в малой степени подверженных влиянию случайных возмущающих воздействий) или требуют существенного упрощения модели. В качестве примера аналитической модели может рассматриваться модель невозмущенного движения объекта в космическом пространстве. Аналитическое математическое моделирование — это вид моделирования, в ходе которого основная роль отводится аналитической математической модели, обладающей следующими особенностями: - аналитическая модель строится на основе некоторой теории или научной гипотезы; - модель описывает в целом определенный аспект моделируемой системы (процесс в системе) посредством различных математических конструкций (функций или функционалов, алгебраических или дифференциальных уравнений и т. д.); 169 - модель позволяет получать конечные результаты исследования в виде некоторых формальных соотношений, пригодных для производства количественного или качественного анализа. Использование ЭВМ при аналитическом моделировании не является обязательным, но решение достаточно сложных задач, сформулированных аналитически, целесообразно сопровождать проведением численных исследований на ЭВМ. Для проведения этих исследований разрабатывается соответствующий алгоритм (алгоритмическая модель), реализующая его программа, формируется массив исходных данных, после чего выполняются расчеты. Проведению аналитического моделирования может предшествовать построение концептуальной модели с целью установления того, какой именно теоретический аппарат целесообразно использовать для моделирования данной конкретной системы. Важным достоинством аналитического моделирования является возможность получения на его основе фундаментальных результатов и инвариантных зависимостей, которые могут быть распространены как на различные случаи использования моделируемой системы в тех или иных ситуациях и распространены на случаи рассмотрения других систем данного класса. Основным же недостатком аналитического моделирования является то, что его применение к сложным системам требует существенной идеализации описания системы. Это связано с разрастанием объемов вычислений даже при несущественном усложнении описаний. Такая идеализация может приводить к неполной адекватности получаемых результатов, к тому, что эти результаты могут использоваться лишь в качестве первого приближения. Однако, такие результаты могут быть использованы в ходе проведения моделирования с применением имитационных моделей в качестве неких опорных величин, относительно которых осуществляется дальнейшее исследование системы. 2.8 ИМИТАЦИОННЫЕ МОДЕЛИ Данная разновидность моделей неразрывно связана с идеей машинного эксперимента. Собственно, имитационная модель — это модель комплексная, к которой не предъявляется строгих требований к применению моделей какого- то заданного типа. Идеология многомодельного исследования целиком основывается именно на этом типе моделей. Имитационная модель — это комплексное логико-математическое представление системы, реализованное в виде программы, предназначенной для решения на ЭВМ, включающее в себя модели различного типа, и рассматривающее аспект функционирования динамической системы во 170 времени. Данный класс моделей применяется при невозможности строгого аналитического решения задачи или проведения натурного эксперимента. Имитационные модели служат для изучения поведения во времени сложной неоднородной динамической системы, относительно структуры которой существуют точные знания или детализированные гипотезы. Для каждого элемента или подсистемы моделируемой системы в памяти ЭВМ формируется блок данных, характеризующих ее текущее и предшествующие состояния, блок логических и вычислительных процедур, описывающих изменения критических параметров во времени, а также производятся вычисления этих параметров на основе заданных значений. Комплекс подпрограмм или относительно автономных программных агентов функционирует под управлением программы-супервизора, осуществляющей диспетчеризацию вызовов, активизирующей и приостанавливающей на время выполнение тех или иных процедур в соответствии с планом машинного эксперимента, имитируя тем самым поведение системы. В результате машинного эксперимента формируются массивы данных о состоянии различных параметров системы в различные моменты времени с привязкой к системным событиям, имитируемым в ходе эксперимента. При этом программа-супервизор управляет процессом имитации случайных возмущающих воздействий, от которых зависит функционирование системы в целом и ее элементов и подсистем. Широкое применение здесь находит метод Монте-Карло, ранее упоминавшийся нами. Имитационная модель — это инструмент исследования, посредством которого могут осуществляться и манипуляции с масштабом времени функционирования модели. Различают имитационные модели, функционирующие как в натуральном, так и в замедленном или ускоренном масштабе времени. Это является крайне важным при анализе поведения систем, для наблюдения которых отсутствует возможность воспользоваться натуральным масштабом времени. К разряду таких систем могут быть отнесены экосистемы, популяции, системы, в которых протекают скоротечные физические процессы и иные. К числу наиболее памятных для человечества имитационных моделей могут быть отнесена модель глобальной ядерной войны, приведшая к укоренению в обиходе политиков и военных термина «ядерная зима». Эта модель оказала существенное влияние на международную обстановку и на долгое время снизила накал гонки вооружений. Но уроки не идут впрок — все забывается и новые политики безответственно манипулируют терминами «превентивный удар» и иными, столь же абсурдными. Частным случаем имитационных моделей являются модели ситуационные. |