Главная страница

Судопланов. Судоплатов С.В., Овчинникова Е.В. Дискретная математика 2016. Редакционная коллегия серии учебники нгту


Скачать 2.01 Mb.
НазваниеРедакционная коллегия серии учебники нгту
АнкорСудопланов
Дата05.06.2022
Размер2.01 Mb.
Формат файлаpdf
Имя файлаСудоплатов С.В., Овчинникова Е.В. Дискретная математика 2016.pdf
ТипУчебники
#571403
страница8 из 36
1   ...   4   5   6   7   8   9   10   11   ...   36

| f : R R};
d
dx
®
(где
d
dx
— операция дифференцирова- ния) не является алгеброй, поскольку не всякая функция дифференцируема,

56
Глава 2. АЛГЕБРАИЧЕСКИЕ СИСТЕМЫ
но если рассмотреть множество A = {f (x) | f (x) дифференцируема беско- нечное число раз}, то отображение дифференцирования
d
dx
: f 7→
df
dx
является операцией на A и пара
­
A;
d
dx
®
образует алгебру. ¤
Заметим, что частичную операцию f , отображающую A
n
в A, можно рассматривать как (n + 1)-местное отношение
R
f
­ {(x
1
, x
2
, . . . , x
n
, y) | (x
1
, . . . , x
n
) ∈ A
n
и y = f (x
1
, . . . , x
n
)}.
Поэтому в последнем примере пару
­
{f (x) | f : R R};
d
dx
®
можно считать алгебраической системой, если рассматривать
d
dx
как бинарное отношение
©
(f, g) | g =
df
dx
ª
Алгебра A сигнатуры Σ = {f }, где µ(f ) = 2, называется группоидом.
Единственная здесь операция f обычно обозначается символом ·: A = hA; ·i.
Если A — конечное множество, действия операции · можно задать квадрат- ной таблицей, в которой для каждой пары (a
i
, a
j
) ∈ A
2
записан результат действия ·(a
i
, a
j
). Такая таблица называется таблицей Кэли группоида A.
Группоид A называется полугруппой, если · — ассоциативная операция, т. е.
для всех элементов x, y, z ∈ A верно x · (y · z) = (x · y) · z. Полугруппа A на- зывается моноидом, если существует элемент e ∈ A, называемый единицей,
такой, что e · x = x · e = x для всех x ∈ A. Полугруппы и моноиды имеют особое значение в теории языков при обработке слов.
Пример 2.1.2. Пусть W (X) — множество слов алфавита X. Определим на W (X) операцию конкатенации ˆследующим образом: если α, β ∈ W (X),
то αˆβ = αβ, т. е. результатом является слово, полученное соединением слов
α и β (например, xyzˆzx = xyzzx). Операция ˆ ассоциативна, т. е. для лю- бых слов α, β, γ верно (αˆβγ = αˆ(βˆγ). Следовательно, система hW (X);ˆi
является полугруппой. Так как для всех α ∈ W (X) верно Λˆα = αˆΛ = α,
где Λ — пустое слово, то Λ удовлетворяет свойству единицы. Таким образом,
система hW (X);ˆi является моноидом. ¤
Моноид A = hA; ·i называется группой, если для любого элемента
x ∈ A существует элемент x
1
∈ A, называемый обратным к x, такой, что
x · x
1
= x
1
· x = e. Группа A называется коммутативной или абелевой,
если x · y = y · x для всех x, y ∈ A.
Пример 2.1.3. 1. Если hK; +, ·i — кольцо, то hK; +i — абелева группа.
2. Система hGL
n
(K); ·i, где GL
n
(K) ­ {A | A — матрица порядка n
над полем K, и det A 6= 0} является группой, которая некоммутативна при
n > 2. ¤

2.2. МОРФИЗМЫ
57
§ 2.2.
Морфизмы
Пусть даны алгебраические системы A = hA; Σi и B = hB; Σi. Отобра- жение ϕ: A → B называется гомоморфизмом системы A в систему B, если выполняются следующие условия:
1) для любого функционального символа f
(n)
Σ, соответствующих функций f
A
и f
B
в системах A и B и любых a
1
, a
2
, . . . , a
n
∈ A выполня- ется
ϕ(f
A
(a
1
, a
2
, . . . , a
n
)) = f
B
(ϕ(a
1
), ϕ(a
2
), . . . , ϕ(a
n
));
2) для любого предикатного символа P
(n)
Σ, соответствующих преди- катов P
A
и P
B
в системах A и B и любых a
1
, a
2
, . . . , a
n
∈ A выполняется
(a
1
, a
2
, . . . , a
n
) ∈ P
A
(ϕ(a
1
), ϕ(a
2
), . . . , ϕ(a
n
)) ∈ P
B
.
Если ϕ: A → B — гомоморфизм, то будем его обозначать через
ϕ: A B.
При гомоморфизме сохраняются действия операций и отношения. Это позволяет переносить изучение свойств с одной системы на другую.
Пример 2.2.1. Рассмотрим системы A = hZ; +, 6i и B = hZ
2
; +, 6i, где в системе B сложение задается по правилу
(a
1
, b
1
) + (a
2
, b
2
) = (a
1
+ a
2
, b
1
+ b
2
),
а отношение порядка —
(a
1
, b
1
) 6 (a
2
, b
2
) ⇔ a
1 6 a
2
и b
1 6 b
2
.
Отображение ϕ: Z Z
2
, при котором ϕ(a) = (a, 0), является гомоморфиз- мом. Действительно, для любых a, b ∈ Z имеем
ϕ(a + b) = (a + b, 0) = (a, 0) + (b, 0) = ϕ(a) + ϕ(b),
и если a 6 b, то (a, 0) 6 (b, 0), т. е. ϕ(a) 6 ϕ(b). ¤
Гомоморфизм ϕ: A B, являющийся инъекцией, называется мономор-
физмом. Гомоморфизм ϕ: A B, являющийся сюръекцией, называется
эпиморфизмом, и при этом система B называется гомоморфным образом

58
Глава 2. АЛГЕБРАИЧЕСКИЕ СИСТЕМЫ
системы A. Гомоморфизм ϕ: A A называется эндоморфизмом. Сюръек- тивный мономорфизм ϕ: A B, для которого ϕ
1
— гомоморфизм, называ- ется изоморфизмом A на B и обозначается через ϕ: A
B. Если существует изоморфизм ϕ: A
B, то системы A и B называются изоморфными и обо- значается это так: A ' B.
Таким образом, условие A ' B означает, что существует биекция
ϕ: A ↔ B, удовлетворяющая следующим условиям:
1) для любого функционального символа f
(n)
Σ, соответствующих функций f
A
и f
B
в системах A и B и любых a
1
, a
2
, . . . , a
n
∈ A выполня- ется
ϕ(f
A
(a
1
, a
2
, . . . , a
n
)) = f
B
(ϕ(a
1
), ϕ(a
2
), . . . , ϕ(a
n
));
2) для любого предикатного символа P
(n)
Σ, соответствующих преди- катов P
A
и P
B
в системах A и B и любых a
1
, a
2
, . . . , a
n
∈ A выполняется
(a
1
, a
2
, . . . , a
n
) ∈ P
A
(ϕ(a
1
), ϕ(a
2
), . . . , ϕ(a
n
)) ∈ P
B
.
Изоморфизм ϕ: A
A называется автоморфизмом системы A. Заметим,
что, поскольку изоморфизм ϕ: A
B является биекцией A ↔ B, изоморф- ные системы равномощны.
Утверждение 2.2.1. 1. id
A
: A
A.
2. Если ϕ: A
B, то ϕ
1
: B
A.
3. Если ϕ: A
1

A
2
и ψ: A
2

A
3
, то ϕ ◦ ψ: A
1

A
3
. ¤
Таким образом, отношение изоморфизма ' является эквивалентностью на любом множестве алгебраических систем (отметим, что класс всех алгеб- раических систем не является множеством, поскольку не существует множе- ства всех множеств). Это означает, что отношение изоморфизма разбивает множества алгебраических систем на классы эквивалентности, в каждом из которых содержатся системы, имеющие “одинаковое устройство”. Это да- ет возможность переносить изучение свойств с одной системы на другую,
изоморфную ей. Так, используя факт изоморфизма геометрического вектор- ного пространства пространству строк, работу с геометрическими объекта- ми можно свести к действиям с наборами чисел, что позволяет применять компьютеры.
Пример 2.2.2. 1. Рассмотрим множество векторов E
3
геометрическо- го векторного пространства с операциями сложения векторов и умножения

2.2. МОРФИЗМЫ
59
векторов на вещественные числа. Получим систему A = hE
3
; +, {λ·}
λ∈R
i бес- конечной сигнатуры, где одноместные функции λ· ставят в соответствие век- тору

a вектор λa. Рассмотрим также систему B = hR
3
; +, {λ·}
λ∈R
i, носитель которой состоит из троек вещественных чисел (x, y, z), + — двухместная операция покоординатного сложения троек, а функция λ· — операция умно- жения троек на число λ для всех вещественных чисел λ. Системы A и B яв- ляются линейными пространствами над полем R. Отображение ϕ, ставящее в соответствие вектору a ∈ E
3
его координатную строку (x, y, z) в некотором фиксированном базисе e
1
, e
2
, e
3
, является биекцией (ϕ: E
3
↔ R
3
), при кото- рой сохраняются действия операций: ϕ(a+b) = ϕ(a)+ϕ(b) и ϕ(λ·a) = λ·ϕ(a).
Таким образом, ϕ — изоморфизм линейных пространств A и B, и, следова- тельно, изучение геометрических векторов можно свести к изучению троек чисел и наоборот.
2. Рассмотрим два равномощных алфавита X, X
0
и алгебры
A = hW (X);ˆi, B = hW (X
0
);ˆi (см. пример 2.1.2). Покажем, что A ' B.
Так как |X| = |X
0
|, то существует биекция ϕ: X ↔ X
0
. Построим по ней би- екцию ψ: W (X) ↔ W (X
0
), при которой слову α ∈ W (X) ставится в соответ- ствие слово β ∈ W (X
0
), получающееся заменой каждого символа x в слове α
на символ ϕ(x). Построенная биекция ψ дает искомый изоморфизм A на B,
поскольку ψ(α
1
ˆα
2
) = ψ(α
1
ψ(α
2
) для любых α
1
, α
2
∈ W (X).
3. Для заданного множества U система hP(U); ∩, ∪, , 0, 1i изоморфна си- стеме hP(U); ∪, ∩, , 1, 0i с биекцией ϕ: A 7→ A. Действительно, по законам де Моргана
ϕ(B ∩ C) = B ∩ C = B ∪ C = ϕ(B) ∪ ϕ(C)
и
ϕ(B ∪ C) = B ∪ C = B ∩ C = ϕ(B) ∩ ϕ(C)
для любых B, C ∈ P(U). Кроме того, ϕ(A) = A = ϕ(A), ϕ(0) = 0 = 1
и ϕ(1) = 1 = 0.
4. Рассмотрим группы A = h(0, ∞); ·i, B = hR; +i и отображение
ϕ: (0, ∞) R по правилу ϕ(x) = log
p
(x) для некоторого фиксированно- го p ∈ (0, ∞), p 6= 1. Отображение ϕ является изоморфизмом систем A
и B, называемым логарифмом (по основанию p). Это позволяет произво- дить умножение положительных чисел при помощи сложения вещественных чисел на основании тождества a · b = ϕ
1
(ϕ(a) + ϕ(b)), которое получается из равенства ϕ(a · b) = ϕ(a) + ϕ(b) применением отображения ϕ
1
к обеим частям. ¤

60
Глава 2. АЛГЕБРАИЧЕСКИЕ СИСТЕМЫ
§ 2.3.
Подсистемы
Алгебраическая система A = hA; Σi называется подсистемой системы
B = hB; Σi (обозначается через A B), если выполняются следующие условия:
а) A ⊆ B;
б) для любого функционального символа f
(n)
Σ, соответствующих функций f
A
и f
B
и любых элементов a
1
, a
2
, . . ., a
n
∈ A выполняется равен- ство f
A
(a
1
, . . . , a
n
) = f
B
(a
1
, . . . , a
n
), т. е. интерпретации символа f действуют одинаково на элементах из A;
в) для любого предикатного символа P
(n)
Σ, соответствующих пре- дикатов P
A
и P
B
справедливо равенство P
A
= P
B
∩ A
n
, т. е. предикат P
A
содержит в точности те кортежи отношения P
B
, которые состоят из элемен- тов множества A.
Если Σ — функциональная (предикатная) сигнатура, то подсистема A
алгебры (модели) B называется подалгеброй (подмоделью).
Пример 2.3.1. 1. Если V
0
— подпространство линейного пространства V ,
то V
0
— подсистема (подалгебра) системы V .
2. Если Σ = {P
(1)
}, B = hB; Σi — система, ∅ 6= A ⊆ B, то A = hA; Σi
является подсистемой системы B тогда и только тогда, когда P
A
= P
B
∩A. ¤
Теорема 2.3.1. Если B — алгебраическая система, X ⊆ B, X 6= ∅,
то существует единственная подсистема B(X) B с носителем B(X),
такая, что X ⊆ B(X) и B(X) A для любой подсистемы A B с усло-
вием X ⊆ A.
Доказательство. В качестве B(X) рассмотрим пересечение носите- лей A всех подсистем A B, содержащих X. Так как X ⊆ B(X),
то B(X) 6= ∅. Единственность подсистемы B(X) очевидна. ¤
Подсистема B(X) из теоремы 2.3.1 называется подсистемой, порожден-
ной множеством X в B. Она является наименьшей подсистемой системы B,
содержащей множество X.
Пример 2.3.2. Напомним, что если V — линейное пространство, S
некоторое непустое множество векторов пространства V , то линейная обо- лочка L(S) множества S в V состоит из всевозможных линейных комби- наций векторов из S. Алгебра L(S) является подалгеброй пространства V ,
порожденной множеством S. ¤

2.3. ПОДСИСТЕМЫ
61
Для описания устройства подсистемы B(X) определим индукцией по по- строению понятие терма сигнатуры Σ:
1) переменные x, y, z, . . . и константные символы из Σ суть термы;
2) если f ∈ Σ — n-местный функциональный символ, t
1
, t
2
, . . ., t
n

термы, то f (t
1
, . . . , t
n
) — терм;
3) никаких термов, кроме построенных по пп. 1, 2, нет.
Таким образом, термом является любое функциональное выражение, со- ставленное с помощью переменных и (или) сигнатурных функциональных символов.
Множество всех термов сигнатуры Σ обозначается через T (Σ).
Пример 2.3.3. 1. Термами сигнатуры Σ = {+, ·, 6, 0} будут, например,
0, x, x + y, z · (x + z) + 0 · y, а x + y 6 (0 + z) · x термом не является.
2. Если Σ = {f, g, h} — функциональная сигнатура, где µ(f ) = 3, µ(g) = 1,
µ(h) = 2, то выражения h(f (x
1
, x
2
, x
3
), g(x
2
)), g(f (h(x
1
, x
2
), x
1
, g(x
2
)) — тер- мы, а h(x
1
, f (x
1
, x
3
)) не образует терма.
3. В сигнатуре Σ = {отец
(1)
, Иван
(0)
} терм отец(отец(Иван)) можно про- интерпретировать как “дедушка Ивана”. ¤
Пусть t(x
1
, x
2
, . . . , x
k
) — терм из T (Σ), все переменные которого содер- жатся среди x
1
, x
2
, . . . , x
k
; A = hA; Σi — алгебраическая система. Значение
терма t при значениях a
1
, a
2
, . . . , a
k
∈ A переменных x
1
, x
2
, . . . , x
k
(обозна- чается через t(a
1
, a
2
1   ...   4   5   6   7   8   9   10   11   ...   36


написать администратору сайта