Главная страница

Судопланов. Судоплатов С.В., Овчинникова Е.В. Дискретная математика 2016. Редакционная коллегия серии учебники нгту


Скачать 2.01 Mb.
НазваниеРедакционная коллегия серии учебники нгту
АнкорСудопланов
Дата05.06.2022
Размер2.01 Mb.
Формат файлаpdf
Имя файлаСудоплатов С.В., Овчинникова Е.В. Дискретная математика 2016.pdf
ТипУчебники
#571403
страница7 из 36
1   2   3   4   5   6   7   8   9   10   ...   36
A, то существует множество
P(A) ­ {B | B ⊆ A}.
6. Аксиома замены:
Если P (x, y) — некоторое условие на множества x, y, такое, что для любо- го множества x существует не более одного множества y, удовлетворяющего
P (x, y), то для любого множества a существует множество
{b | P (c, b) для некоторого c ∈ a}.
7. Аксиома экстенсиональности:
Два множества, имеющие одинаковые элементы, равны, т. е. любое мно- жество определяется своими элементами:
A = B ⇔ ∀x (x ∈ A ⇔ x ∈ B).

48
Глава 1. ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ
8. Аксиома регулярности:
Всякое непустое множество x имеет элемент a ∈ x, для которого a∩x = ∅.
Из аксиомы регулярности следует, что каждое множество получается на некотором шаге “регулярного процесса” образования множества всех под- множеств, начинающегося с ∅ и подобного построению натуральных чисел из пустого множества по аксиоме бесконечности. Это означает, что любой элемент любого множества является множеством, сконструированным из пу- стого множества.
Покажем, как аксиоматика ZF позволяет определять теоретико-множес- твенные операции.
Пример 1.8.1. 1. Определим множество A ∪ B исходя из множеств A
и B. По аксиоме существования пары образуется множество {A, B}. С помо- щью аксиомы суммы получаем множество ∪{A, B}, которое по определению совпадает с множеством A ∪ B.
2. Пересечение A ∩ B множеств A и B определяется по аксиоме замены с помощью следующего свойства P (x, y): x = y и x ∈ A. Имеем множество
{b | P (c, b) и c ∈ B} = {b | c = b, c ∈ A и c ∈ B} = {c | c ∈ A и c ∈ B} = A∩B.
3. Покажем, что из аксиом 5 и 6 следует существование множества
A
2
= {(a, b) | a, b ∈ A} для любого множества A. Так как (a, b) = {{a}, {a, b}},
то A
2
⊆ P(P(A)). Пусть свойство P (x, y) означает, что существуют такие
a, b ∈ A, что x = {{a}, {a, b}} и y = x. Тогда множество A
2
равно
{b | P (c, b), c ∈ P(P(A))} и по аксиоме 6 оно существует. ¤
Система аксиом ZFC образуется из ZF добавлением одной из следующих двух эквивалентных аксиом, которые, с одной стороны, являются наименее
“очевидными”, а с другой — наиболее содержательными.
1. Аксиома выбора:
Для любого непустого множества A существует такое отображение
ϕ: P(A) \ {} → A, что ϕ(X) ∈ X для любого непустого множества X ⊆ A.
2. Принцип полного упорядочения:
Для любого непустого множества A существует бинарное отношение 6
на A, для которого hA; 6i — в.у.м.
В системе ZFC справедлив принцип трансфинитной индукции, являю- щийся обобщением принципа полной индукции: если hA; 6i — вполне упо-

ЗАДАЧИ И УПРАЖНЕНИЯ
49
рядоченное множество, P (x) — некоторое свойство, то справедливость свой- ства P (x) на всех элементах x ∈ A следует из того, что для любого z ∈ A
выполнимость свойства P на элементах y, где y < z, влечет выполни- мость P (z):
∀z
³¡
(∀y < z) P (y)
¢
⇒ P (z)
´
∀x P (x)
.
Задачи и упражнения
1. Доказать, что {} 6= ∅.
2. Доказать, что {{0, 1}, {0, 2}} 6= {0, 1, 2}.
3. Доказать, что существует лишь одно множество, не имеющее элементов.
4. Существуют ли множества A, B и C, для которых
A ∩ B 6= ∅, A ∩ C = ∅, (A ∩ B) \ C = ∅?
5. Доказать, что (A ∪ B) = A ∩ B.
6. Доказать основные теоретико-множественные тождества 1–8 (см. с. 17).
7. Решить систему уравнений:
а)
(
A ∩ X = B,
A ∪ X = C,
где A, B и C — данные множества и B ⊆ A ⊆ C;
б)
(
A \ X = B,
X \ A = C,
где A, B и C — данные множества и B ⊆ A, A ∩ C = ∅;
в)
(
A \ X = B,
A ∪ X = C,
где A, B и C — данные множества и B ⊆ A ⊆ C;
г)
(
A ∪ X = B ∩ X,
A ∩ X = C ∪ X;
д)
(
A \ X = X \ B,
X \ A = C \ X;
е)
(
A ∩ X = B \ X,
C ∪ X = X \ A.

50
Глава 1. ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ
8. Построить пример множеств A и B таких, что A × B 6= B × A.
9. Пусть [0, 1], [0, 2] — отрезки на числовой прямой. Дать геометрическую интерпретацию множеств [0, 1] × [0, 2], [0, 1]
2
, [0, 2]
3 10. Изобразить отношения
P = {(a, 1), (a, 2), (b, 2), (b, 3), (c, 1), (c, 4)}
и Q = {(1, α), (2, β), (3, α)}. Найти δ
Q
, ρ
Q
, P ◦ Q, [P ], [Q], [P ◦ Q].
11. Для отношений P = {(x, y) R
2
| x = y
2
} и Q = {(x, y) R
2
| x · y > 0}
найти P ◦ Q, Q ◦ P , P ◦ P и P
1 12. Пусть A и B — конечные множества мощности m и n соответственно.
Найти:
а) число бинарных отношений между элементами множеств A и B;
б) число функций из A в B;
в) число инъекций из A в B;
г) число биекций из A в B.
13. Доказать следующие эквивалентности:
а) A × B ∼ B × A; б) (A × B)
C
∼ A
C
× B
C
14. Доказать, что:
а) если A конечное множество, B — подмножество множества A,
то множество B конечно;
б) если A
1
, . . . , A
n
— конечные множества, то множества A
1
∪ . . . ∪ A
n
и A
1
× . . . × A
n
конечны.
15. Доказать, что если A — счетное множество, B — конечное множество,
то множество A \ B счетно.
16. Доказать, что если множества A
i
, i ∈ ω, счетны, то множество
i∈ω
A
i
счетно.
17. Доказать, что если A — счетное множество, то множество
n∈ω
A
n
всех конечных последовательностей, составленных из элементов множества
A, счетно.
18. Доказать, что множество всех многочленов от одной переменной с ра- циональными коэффициентами счетно.
19. Доказать, что множества точек отрезка и квадрата эквивалентны.

ЗАДАЧИ И УПРАЖНЕНИЯ
51 20. Доказать, что n
3
− n делится на 3 для любого n ∈ ω.
21. Доказать, что имеют место следующие равенства:
а) 1 + 3 + 5 + . . . + (2n − 1) = n
2
;
б) 1 + 4 + 7 + . . . + (3n − 2) =
3n
2
− n
2
;
в) 1 + a + a
2
+ . . . + a
n−1
=
1 − a
n
1 − a
, a ∈ R \ {1}.
22. Доказать, что имеют место следующие неравенства:
а) n
2
> 2n + 1, n ∈ ω, n > 3;
б) 2
n
> n
2
, n ∈ ω, n > 5;
в) n! > n
3
, n ∈ ω, n > 6;
г)
4
n
n + 1
<
(2n)!
(n!)
2
, n ∈ ω, n > 2.
23. Найти множество всех натуральных чисел, для которых истинно нера- венство n! < 2
n
24. Доказать, что каждое натуральное число n > 8 может быть представ- лено в виде n = 3k + 5l, k, l ∈ ω.
25. Найти ошибку в доказательстве того, что все лошади имеют одинако- вую масть.
Доказательство. Покажем с помощью математической индукции,
что любые n лошадей имеют одну и ту же масть. При n = 1 имеет- ся лишь одна лошадь, и поэтому она имеет ту же масть, как она сама.
Рассмотрим теперь индукционное предположение, состоящее в том что любые n лошадей имеют одинаковую масть, и установим, что имеют одну и ту же масть любые n + 1 лошадей. Предположим, что в загон помещена (n+1)-я лошадь. Выведем из загона одну лошадь. Поскольку теперь в загоне n лошадей, по индукционному предположению все они имеют одинаковую масть. Вернем выведенную лошадь в загон и выве- дем другую лошадь. Снова в загоне n лошадей, и все они имеют од- ну масть. Следовательно, все рассматриваемые лошади имеют ту же масть, что и те лошади, которые были выведены. Поэтому все n + 1
лошадей имеют одинаковую масть. В силу принципа математической индукции все лошади имеют одну и ту же масть. ¤

52
Глава 1. ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ
26. Построить бинарное отношение:
а) рефлексивное, симметричное, не транзитивное;
б) не рефлексивное, антисимметричное, не транзитивное;
в) рефлексивное, не симметричное, транзитивное.
27. Пусть L — множество всех прямых на плоскости. Являются ли экви- валентностями следующие отношения:
а) отношение параллельности двух прямых;
б) отношение перпендикулярности двух прямых?
28. Доказать, что отношение {((x
1
, y
1
), (x
2
, y
2
)) | x
2 1
+ y
2 1
= x
2 2
+ y
2 2
} являет- ся отношением эквивалентности на множестве R
2
. Определить классы этой эквивалентности.
29. Доказать, что отношение {(a, b) | (a − b) — рациональное число} явля- ется отношением эквивалентности на множестве вещественных чисел.
30. Пусть на множестве ω определено отношение 6, задаваемое следую- щим правилом:
m 6 n ⇔ m делит n.
Считая, что 0 делит 0, показать, что 6 — частичный порядок. Для произвольных натуральных чисел m и n найти inf{m, n} и sup{m, n}
относительно указанного порядка.
31. Для обычных отношений 6 и < на множестве ω показать, что
< ◦ < 6= <, 6 ◦ < = < и 6 > = ω
2 32. Построить пример ч.у.м. с единственным минимальным элементом, но без наименьшего.
33. Рассмотрим на множестве R
2
отношение Парето Π:
(x
1
, y
1
) Π (x
2
, y
2
) ⇔ x
1 6 x
2
и y
1 6 y
2
.
Для точек A(a
1
, a
2
) и B(b
1
, b
2
) найти множество нижних и верхних гра- ней множества {A, B}. Чему равен inf{A, B} и sup{A, B}?
34. Построить линейный порядок на множестве комплексных чисел.
35. Составить матрицу отношения полного порядка, при котором нумера- ция элементов ведется: а) по возрастанию; б) по убыванию.

ЗАДАЧИ И УПРАЖНЕНИЯ
53 36. Проверить, являются ли частичными порядками бинарные отношения со следующими матрицами:
а)





1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1





; б)





1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1





; в)





1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1





;
г)





1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1





; д)





1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1





; е)





1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1





;
ж)





1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1





; з)





1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1





; и)





1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1





;
к)





1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1





; л)





1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1





; м)





1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1





Построить диаграммы Хассе для заданных порядков. Есть ли в со- ответствующих частично упорядоченных множествах наименьшие или наибольшие элементы? Какие из этих частичных порядков линейные?
37. Построить всевозможные попарно неизоморфные четырехэлементые ч.у.м. hA; 6i. Какие из этих ч.у.м. самодвойственны, т. е. изоморфны
hA; >i?

Глава 2
АЛГЕБРАИЧЕСКИЕ СИСТЕМЫ
§ 2.1.
Определения и примеры
Часто объектом изучения в математике и ее приложениях служит мно- жество вместе с определенной на нем структурой. Читателю уже известны поля, формирующие основу обычной арифметики, линейные пространства,
обеспечивающие связь геометрических объектов с операциями над числами,
множества с введенными на них бинарными отношениями. Все эти струк- туры образуют алгебраические системы, представляющие собой некоторые миры с определенными в них законами. Перейдем к точному определению алгебраической системы.
Рассмотрим непустое множество A. В § 1.2 было введено понятие
n-местной операции на множестве A (f : A
n
→ A). Отметим, что, поскольку операция f является функцией, для любого набора (x
1
, . . . , x
n
) ∈ A
n
ре- зультат применения операции f (x
1
, . . . , x
n
) однозначно определен. Так как область значений операции f лежит в множестве A, то будем говорить, что операция f замкнута на множестве A.
Сигнатурой или языком Σ называется совокупность предикатных и функциональных символов с указанием их местности. При этом множе- ства предикатных и функциональных символов не пересекаются. 0-Местный функциональный символ называется константным символом или просто
константой. Если α — функциональный или предикатный символ, то его местность обозначается через µ(α). n-Местные предикатные и функциональ- ные символы часто будем обозначать соответственно через P
(n)
и f
(n)
. Если в рассматриваемой сигнатуре используются стандартные символы, такие,
например, как + для операции сложения, 6 для отношения порядка, | для

2.1. ОПРЕДЕЛЕНИЯ И ПРИМЕРЫ
55
отношения делимости, 0 для константного символа и другие, то мы просто пишем Σ = {6}, Σ = {6, +, ·, 0}, Σ = {+, −, |, 0, 1} и т. д.
Алгебраической системой A = hA; Σi сигнатуры Σ называется непустое множество A, где каждому n-местному предикатному (функциональному)
символу из Σ поставлен в соответствие n-местный предикат (соответственно операция), определенный на множестве A. Множество A называется носите-
лем или универсумом алгебраической системы hA; Σi. Предикаты и функ- ции, соответствующие символам из Σ, называются их интерпретациями.
Обозначать интерпретации будем теми же буквами, что и соответствую- щие символы сигнатуры. Заметим, что интерпретацией любого константного символа является некоторый элемент (константа) из A.
Алгебраические системы в дальнейшем будут обозначаться готическими буквами A, B, . . . (возможно, с индексами), а их носители — соответствующи- ми латинскими буквами A, B, . . . (с соответствующими индексами). Иногда мы будем отождествлять носитель с алгебраической системой.
Мощностью алгебраической системы A называется мощность ее носите- ля A. В дальнейшем будем часто опускать слово “алгебраическая” и назы- вать A системой или структурой.
Непустая сигнатура Σ называется функциональной (предикатной), если она не содержит предикатных (функциональных) символов. Система A на- зывается алгеброй (моделью или реляционной системой), если ее сигнатура функциональна (предикатна).
Пример 2.1.1. 1. Набор ; +, ·i является алгеброй с двумя двухмест- ными операциями.
2. Набор ; 6, +, ·,
0
, 0, 1i является системой с бинарным отношением 6
(µ(6) = 2), двухместными операциями +, · (µ(+) = µ(·) = 2), одноместной операцией
0
: n 7→ n + 1 (µ(
0
) = 1) и двумя нуль-местными операциями
(константами) 0, 1 (µ(0) = µ(1) = 0).
3. Набор hZ; +, :,

2i не образует алгебру, поскольку деление не является операцией на множестве Z (например, 2 : 3 /
Z), а элемент

2 не принадле- жит Z.
4. Набор hP(U); ∩, ∪, , 0, 1i с двухместными операциями , , одномест- ной операцией : A 7→ A, константами 0 = ∅ и 1 = U является алгеброй,
называемой алгеброй Кантора.
5. Алгеброй является любое кольцо.
6. Пара
­
{f (x)
1   2   3   4   5   6   7   8   9   10   ...   36


написать администратору сайта