Главная страница
Навигация по странице:

  • Колледж

  • Задание/вариант № ___1___-______

  • Основная часть.

  • Риторическая

  • Список литературы.

  • рейтинговая математика. рейтинговая работа по математике.. Реферат (домашняя творческая работа, расчетноаналитическое задание, реферат, контрольная работа) по дисциплине Математика


    Скачать 79.65 Kb.
    НазваниеРеферат (домашняя творческая работа, расчетноаналитическое задание, реферат, контрольная работа) по дисциплине Математика
    Анкоррейтинговая математика
    Дата24.02.2023
    Размер79.65 Kb.
    Формат файлаdocx
    Имя файларейтинговая работа по математике..docx
    ТипРеферат
    #953348















    Колледж

    (Факультет среднего профессионального образования)

    Рейтинговая работа Реферат

    (домашняя творческая работа, расчетно-аналитическое задание, реферат, контрольная работа)

    по дисциплине Математика

    Задание/вариант № ___1___-______

    1. Тема* История появления алгебры как науки.


    Выполнена обучающимся группы ПСО-21.11

    Солоненко Анастасией Дмитриевной

    (фамилия, имя, отчество)

    Преподаватель Тебиева Захара Османовна

    (фамилия, имя, отчество)

    Москва – 2021 г.

    Содержание:

    1. Введение.

    2. Основная часть.

    А) Возникновение алгебры.

    Б) Ступени развития алгебры.

    В) История появления цифр и чисел.

    3. Заключение.

    4. Список литературы.


    1. Введение.


    В новом учебном году мы начали изучать новый для нас предмет – алгебру. Основной задачей алгебры является поиск общего решения алгебраических уравнений. Алгебра дает возможность не только выполнять вычисления, но и учит делать это быстрее и рациональнее. Алгебра, вместе с арифметикой, есть наука о числах и через посредство чисел – о величинах вообще. Не занимаясь изучением свойств каких-нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин. Различие между арифметикой и алгеброй состоит в том, что первая наука исследует свойства данных, определенных величин, между тем как алгебра занимается изучением общих величин, значение которых может быть произвольное. Следовательно, алгебра изучает только те свойства величин, которые общи всем величинам, независимо от их значений. 

    Таким образом, алгебра есть обобщенная арифметика. Это подало повод Ньютону назвать свой тракт об алгебре «Общая арифметика». Гамильтон, полагая, что подобно тому, как геометрия изучает свойства пространства, алгебра изучает свойства времени, назвал алгебру «Наукою чистого времени». Однако такие определения не выражают ни существенных свойств алгебры, ни исторического ее развития. Алгебру можно определить как «науку о количественных соотношениях». 

    В данной работе мы рассмотрим историю возникновения такой сложной, но, в то же время, интересной науки. 
    Цели работы:

    - изучение истории развития алгебры;

    - ознакомление с открытиями основоположников этой науки;

    - подготовка к выступлению на научно-практической конференции; 

    Задачи:

    - изучение материала по истории развития алгебры;

    - оформление реферата;

    - проведение презентации; 



    1. Основная часть.

    Исаак Ньютон – известный английский математик, механик, астроном и физик, создатель классической механики, с 1703 года президент Лондонского королевского общества, писал: «Алгебра – есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами».

    А) Возникновение алгебры.

    Алгебра – часть математики, которая изучает общие свойства, действия над различными величинами и решение уравнений, связанных с этими действиями.

    Слово «алгебра» возникло после появления тракта хорезмского  математика и астронома Мухаммеда бен Мусса Аль-Хорезми «Китабаль-джебр Валь-мукабала» («Книга о восстановлении и противопоставлении»). Термин «аль-джебр», взятый из названия этой книги, в дальнейшем стал употребляться как «алгебра». А имя Аль-Хорезми в видоизмененной форме Algorithmus превратилось в нарицательное слово «алгоритм».

    Данный трактат оказал большое влияние на развитие математики в Западной Европе. В нем алгебра впервые рассматривается как самостоятельная отрасль математики, вводятся правила действий с алгебраическими количествами и систематически решаются уравнения 1-й и 2-й степеней. 

    С помощью другого трактата «Книга об индийском счете» европейцы познакомились с индийскими методами записи чисел, с употреблением нуля и с поместным значением цифр. Оба трактата в 12 веке были переведены на латинский язык и долгое время служили основными учебниками по математике.

    Алгебра, как искусство решать уравнения, зародилась очень давно. Это было связано с потребностями практики и в результате поиска общих приемов решения однотипных задач. 

    Арифметика и нехитрая алгебра использовались при обмене денег и расчетах за товары, вычислении простых и сложных процентов, налогов и доли урожая, сдаваемой в пользу государства, храма или землевладельца. Многочисленные арифметические и геометрические задачи возникали в связи со строительством каналов, зернохранилищ и другими общественными работами. В египетских папирусах можно найти задачи, помогающие вычислять вес тел, площади посевов, объемы зернохранилищ, размеры податей и количество камней, требуемое для возведения тех или иных сооружений. А также более сложные задачи, связанные с  использованием переводных коэффициентов. 

    Самые ранние, дошедшие до нас рукописи свидетельствуют о том, что в Древнем Вавилоне и Древнем Египте были известны приемы решения линейных уравнений. В математических папирусах имеются задачи, которые приводят к уравнениям не только первой степени с одним неизвестным, но и вида ax2 = b.

    Дошедший до нас трактат греческого математика Диофанта, жившего в III веке, содержит исследование алгебраических вопросов. В своём труде он дал решение задач приводящих к так называемым диофантовым уравнениям, впервые ввёл буквенную символику в алгебру. Также в его работах мы встречаем правило знаков (минус на минус дает плюс), исследование степеней чисел и решение множества неопределенных вопросов, которые в настоящее время относятся к теории  чисел. 

    Из 13 книг, составлявших полное собрание сочинений Диофанта, до нас дошло только 6, в которых решаются уже довольно трудные алгебраические задачи.

    Нам неизвестно о каких бы то ни было иных сочинениях об алгебре в древности, кроме утерянного сочинения знаменитой дочери Теона – Гипатии.

    Эта женщина – математик, астроном и философ была убита  в 415 году фанатами-христианами. Она является автором комментариев к Аполлонию Пермскому и Диофанту.

    В процессе развития алгебра из науки об уравнениях преобразовалась в науку об операциях, сходных с действиями над числами. 

    В настоящее время алгебру делят на низшую и высшую. К низшей алгебре относят теорию простейших арифметических операций над алгебраическими выражениями, решение уравнений первой и второй степени, теорию степеней и корней, теорию логарифмов и комбинаторику. К высшей алгебре относят теорию уравнений произвольных степеней, теорию исключений, теорию симметрических функций, теорию подстановок, и, наконец, изложение различных частных способов отделения корней уравнений, определения числа вещественных или мнимых корней данного уравнения с численными коэффициентами.

    Б) Ступени развития алгебры.

    В эволюции алгебры различают три ступени развития: риторическую, синкопирующую и символическую. 

    Риторическая, или словесная, математика не пользуется символами. На этой ступени находится греческая математика начала III века (до Диофанта), арабская и европейская математика до XIV века. 

    Однако и там имеются особые знаки для некоторых математических понятий. У египтян используют иероглифы. Скарабей – для понятия «равно»; ноги, идущие против чтения – для понятия «больше»; уходящие ноги – для понятия «меньше»; иероглиф совы – неизвестное, искомое.

    Первые записи выглядели как зарубки на палке. Если надо отсчитать тысячи, пройдет больше часа. Это была очень неудобная запись! Поэтому пять тысяч лет назад в Вавилоне, Египте и Китае почти одновременно родился новый способ записи чисел. Люди додумались писать числа по разрядам. Египтянам, чтобы написать цифру 7 приходилось рисовать семь палочек. 

    Для запоминания результатов счёта инки использовали не зарубки, а узелки. Греческая система счисления была основана на использовании букв алфавита.

    Очень интересная система счета была у народа Майя, который жил в Центральной Америке. У индейцев Майя была в то время развитая культура. Они считали двадцатками. У них была двадцатеричная система счета. Числа от 1 до 20 обозначались точками и черточками. Если под числом рисовался значок в виде глаза, то это число нужно было увеличить в 20 раз. Изображение в виде глаза играло у народов Майя ту же роль, что у нас цифра 0.
    Вторая ступень развития – это синкопирующая математика. В этот период для обозначения часто встречающихся понятий используются отдельные буквы и сокращения. Диофант употреблял перевернутую букву ψ (пси), Лука Пачоли употреблял буквы «p» и «m» для обозначения плюса и минуса. 

    Третья ступень – символическая математика. Этот период в развитии математики приходится на начало XV века. До этого времени изложение алгебры велось в основном словесно. Буквенные обозначения и математические знаки появились постепенно. Знаки «+» и «–» впервые встречаются у немецких алгебраистов XV века.

    Решительный шаг в использовании алгебраической символики был сделан в XVI веке, когда французский математик Франсуа Виет и его современники стали применять буквы для обозначения не только чисел неизвестных (что делалось и ранее), но и любых чисел. Однако эта символика еще отличалась от современной. 

    Виет ввел буквенные обозначения для коэффициентов и неизвестного в уравнениях: например, искомое – буква N (Numers), квадрат искомого – Q (Quadrates), куб – С (Cubes), равно –  aequ (aequali).

    Декарт в 1637 году вводит для обозначения равенства известный всем знак «=». 

    В 1631 году Харриот предлагает для обозначения неравенства использовать теперешние знаки «>» и «<». В конце XV века знаки сложения «+» и вычитания «–», предложенные Видманом, получают широкое распространение. Круглые скобки появились у Таргальи в 1556 году, но лишь в середине XVIII века скобки стали употребляться во всех математических книгах. 

    Знак умножения « » впервые в 1661 году ввел У.Аутрид. 

    Современные знаки умножения в виде «» и деления в виде «:» впервые использовал немецкий философ, математик и физик Готфрид Лейбниц. Знак деления в 1684 году, а умножения – в 1698 году. В 1674 году усовершенствуя счетную машину Б. Паскаля, конструирует «компьютер», умеющий выполнять основные арифметические действия. 

    В 1675 году Лейбниц создает дифференциальное и интегральное исчисление, обнародовав главные результаты своего открытия в 1684. Именно Лейбницу принадлежат термины «дифференциал», «дифференциальное исчисление», «дифференциальное уравнение», «функция», «переменная», «постоянная», «координаты», «абсцисса», «алгебраические и трансцендентные кривые», «алгоритм».

    В) История появления цифр и чисел.

    Понятие о натуральных числах формировалось постепенно и осложнялось неумением первобытного человека отделять числовую абстракцию от её конкретного представления. Вследствие этого счёт долгое время оставался только вещественным, то есть использовались пальцы, камешки, пометки. Археолог Б. А. Фролов обосновывает существование счёта уже в верхнем полиолите, который был более двух миллионов лет назад. До появления цифр в том виде, который известен нам сейчас, разные народы использовали своё написание цифр и чисел.

    В хозяйственной жизни далекого прошлого люди обходились сравнительно небольшими числами, так называемым малым счетом наших предков. 

    Счет доходил до числа 10 000, которое в самых старых памятниках называется тьма, то есть темное число. В дальнейшем граница малого счета была отодвинута до 108, до числа тьма тём. Но наряду с этим малым числом, если получался великий счет и перечень, употреблялась вторая система, называвшаяся великим числом или счетом или числом великим словенским. При счете употреблялись более высокие разряды: тьма – 106, легион – 1012, леодр – 1024, ворон – 1048, иногда еще колода – десять воронов – 1049, хотя колоду следует принять как 1096. Для обозначения этих больших чисел наши предки придумали способ, не встречающийся ни у одного из известных нам народов: число единиц любого из перечисленных высших разрядов обозначалось той же буквой, что и простые единицы, но окружность для каждого числа собственным бордюром. 

    Величайшие греческие математики не додумались до этого способа письма чисел. Таких больших чисел не требовала и не требует и теперь никакая практическая задача. 

    Архимед, величайший древнегреческий математик, сосчитал, что число песчинок во всем мировом пространстве, как это понимал в то время, не превышает 1063. Славянский честолюбец сказал бы, что это число песчинок не больше тысяч легионов воронов 1063 = 103 * 1012 * 1048. Число песчинок во всем мировом пространстве того времени действительно могло казаться наибольшим мыслимым числом. 

    Вавилоняне создали систему счисления, использовавшую для чисел от 1 до 59, основание 10. Символ, обозначавший единицу, повторялся нужное количество раз для чисел от 1 до 9. Для обозначения чисел от 11 до 59 вавилоняне использовали комбинацию символа числа 10 и символа единицы. Для обозначения чисел, начиная с 60 и больше, вавилоняне ввели позиционную систему счисления с основанием 60. Существенным продвижением стал позиционный принцип, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен. Примером могут служить значения шестерки в записи (современной) числа 606. Однако нуль в системе счисления древних вавилонян отсутствовал, из-за чего один и тот же набор символов мог означать и число 65 (60 + 5), и число 3605 (602 + 0 + 5). Вавилоняне составили таблицы обратных чисел, которые использовались при выполнении деления, таблицы квадратов и квадратных корней, а также таблицы кубов и кубических корней. Им было известно приближение числа.

    Греческая система счисления была основана на использовании букв алфавита. Аттическая система, бывшая в ходу с VI по III век до нашей эры, использовала для обозначения единицы вертикальную черту, а для обозначения чисел 5, 10, 100, 1000 и 10 000 начальные буквы их греческих названий. В более поздней ионической системе счисления для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы. Кратные 1000 до 9000 обозначались так же, как первые девять целых чисел от 1 до 9, но перед каждой буквой ставилась вертикальная черта. Десятки тысяч обозначались буквой М (от греческого “мириои” – 10 000), после которой ставилось то число, на которое нужно было умножить десять тысяч. 

    Для пифагорейцев любое число представляло собой нечто большее, чем количественную величину. Например, число 2, согласно их воззрению, означало различие и потому отождествлялось с мнением. Четверка представляла справедливость, так как это первое число, равное произведению двух одинаковых множителей. 

    Пифагорейцы также открыли, что сумма некоторых пар квадратных чисел есть снова квадратное число. Например, сумма 9 и 16 равна 25, а сумма 25 и 144 равна 169. Такие тройки чисел, как 3, 4 и 5 или 5, 12 и 13, называются пифагоровыми числами.

    Римская система счисления основывалась на громоздких обозначениях чисел. Главной ее особенностью был вычитательный принцип, например, запись числа 9 в виде IX, вошел в широкое употребление только после изобретения наборных литер в 15 веке. Римские обозначения чисел применялись в некоторых европейских школах примерно до 1600 года, а в бухгалтерии и столетием позже. 

    1. Заключение.

    Начало современного этапа в развитии математики характеризовалось изменениями во всех ее основных разделах: геометрии, алгебре и анализе.

    Коренные изменения в алгебре наметились еще в XIX веке. Если алгебра минувшего времени оперировала числом, то современная алгебра распространяется на величины гораздо более общего характера: события, функции, множества, операции над векторами и над движениями разного рода. Алгебра в своём развитии прошла много сложных этапов, начиная с узелковой системы счёта и заканчивая математическим анализом и теорией вероятности, начиная с элементарных зарубок и заканчивая линейными уравнениями и интегралами.

    В данной работе мы ознакомились с историей развития алгебры, узнали, как она формировалась в процессе эволюции человечества, изучили историю возникновения цифр и чисел. Узнали имена основоположников математики и ознакомились с содержанием некоторых их работ и открытий. Теперь мы знаем, что современный вид алгебраической символике придал Рене Декарт ещё в середине XVII века (трактат «Геометрия»), Исаак Ньютон усовершенствовал этот процесс («Универсальная арифметика»), а Эйлер внёс некоторые оставшиеся тонкости и уточнения.

    В настоящее время сильно разрослись методы применения алгебры в различных науках: геометрии, анализе, физике, кристаллографии. Обширными разделами алгебры являются теория групп и линейная алгебра. Бурное развитие всех отраслей науки и техники неразрывно связано с развитием алгебры как науки. На базе алгебры в эпоху тотальной компьютеризации возникли новые науки. Изучение основ алгебры в современных условиях становится все более существенным элементом общеобразовательной подготовки молодого поколения.

    1. Список литературы.

    1. Очерки по истории математики, Б.В.Болгарский, Минск, «Высшая школа», 1979 г.

    2. Математика, Я познаю мир, Москва, АСТ, 2000 г.

    3. Алгебра, учебник для 7 класса общеобразовательных учреждений, А.Г.Мордкович, Москва, Мнемозина, 2009 г.

    4. Энциклопедический словарь юного математика, Москва, Педагогика-пресс, 1999 г. 

    5. https://ru.wikipedia.org/wiki/Алгебра



    написать администратору сайта