Главная страница
Навигация по странице:

  • 1.Общая характеристика, краткие сведения об этом истории открытия и их распространенности в природе. 1.1 История открытия кислорода.

  • 1.2 История открытия серы

  • 1.3 История открытия селена.

  • 1.4 История открытия теллура.

  • 1.5 История открытия полония.

  • 1.6 Общая характеристика.

  • 2. Изменения в группе величины радиусов атомов и ионов, потенциала ионизации.

  • 3.Сравнение свойств простых веществ. Свойства пероксидов и супероксидов. 3.1Свойства кислорода.

  • Реферат химия и биологическая роль элементов via группы студент 104 группы лечебного факультета Исламов Г. Ф


    Скачать 50.66 Kb.
    НазваниеРеферат химия и биологическая роль элементов via группы студент 104 группы лечебного факультета Исламов Г. Ф
    Дата27.02.2022
    Размер50.66 Kb.
    Формат файлаdocx
    Имя файлаkhimas (1).docx
    ТипРеферат
    #375499
    страница1 из 3
      1   2   3

    ФГБОУ ВО ОрГМУ МИНЗДРАВА РОССИИ

    КАФЕДРА ХИМИИ И ФРМАЦЕВТИЧЕСКОЙ ХИМИИ


    РЕФЕРАТ

    Химия и биологическая роль элементов VIA – группы

    Выполнил: студент 104 группы

    лечебного факультета

    Исламов Г.Ф.

    Проверила: Петрова А. А.

    Оренбург, 2022

    Содеражание:

    1.Общая характеристика, краткие сведения об этом истории открытия и их распространенности в природе.

    2. Изменения в группе величины радиусов атомов и ионов, потенциала ионизации.

    3. Сравнение свойств простых веществ. Свойства пероксидов и супероксидов.

    4. Сера: свойства соединений в отрицательных степенях окисления (сульфиды и полисульфиды); свойства соединений, содержащих серу в положительных степенях окисления (галогенды и оксогалогениды).

    5. Политионовые кислоты, пероксосерные кислоты и их соли.

    6.Свойства селена и теллура и их соединений: селеноводород, теллуроводород, оксиды, кислородосодержащие кислоты.

    7.Качественные реакции на сульфат-ионы и сульфид-ионы.

    8.Соединения элементов VIA-группы как лекарственные средства.

    9. Медико-биологическое значение элементов VIA-группы.

    10. Селен как элемент, способствующий проявлению кариеса.

    11.Список, используемой литературы.


    1.Общая характеристика, краткие сведения об этом истории открытия и их распространенности в природе.

    1.1 История открытия кислорода.

    Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

    2HgO (t) → 2Hg + O2

    Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

    Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

    Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

    Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

    Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазь
    1.2 История открытия серы

    Сера (англ. Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с самых древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны "сернистые испарения", смертельное действие выделений горящей серы. Сера, вероятно, входила в состав "греческого огня", наводившего ужас на противников. Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, легкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали "принципом горючести" и обязательной составной частью металлических руд. Пресвитер Теофил (XI в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее "принцип горючести" явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Происхождение лат. Sulfur неясно. Полагают, что это название заимствовано от греков. В литературе алхимического периода сера часто фигурирует под различными тайными названиями. У Руланда можно найти, например, названия Zarnec (объяснение "яйца с огнем"), Thucios (живая сера), Terra foetida, spiritus foetens, Scorith, Pater и др. Древнерусское название "сера" употребляется уже очень давно. Под ним подразумевались разные горючие и дурно пахнущие вещества, смолы, физиологические выделения (сера в ушах и пр.). По-видимому, это название происходит от санскритского сirа (светло-желтый). С ним связано слово "серый", т. е. неопределенного цвета, что, в частности, относится к смолам. Второе древнерусское название серы - жупел (сера горючая) - тоже содержит в себе понятие не только горючести, но и дурного запаха. Как объясняют филологи, нем. Schwefel имеет санскритский корень swep (спать, англо-саксонское sweblan - убивать), что, возможно, связано с ядовитыми свойствами сернистого газа

    1.3 История открытия селена.

    Название происходит от греч. σελήνη — Луна. Элемент назван так в связи с тем, что в природе он является спутником химически сходного с ним теллура (названного в честь Земли).

    1.4 История открытия теллура.

    Впервые был найден в 1782 году в золотоносных рудах Трансильваниигорным инспектором Францом Иозефом Мюллером (впоследствии барон фон Рейхенштейн), на территории Австро-Венгрии. В 1798 году Мартин Генрих Клапрот выделил теллур и определил важнейшие его свойства.

    1.5 История открытия полония.

    Элемент открыт в 1898 году супругами Пьером Кюри и Марией Склодовской-Кюри в смоляной обманке[2]. Элемент был назван в честь родины Марии Склодовской-Кюри — Польши (лат. Polonia).
    1.6 Общая характеристика.

    В подгруппу кислорода входит пять элементов: кислород, сера, селен, теллур и полоний (радиоактивный металл). Это р-элементы VI группы периодической системы Д.И.Менделеева. Они имеют групповое название – халькогены, что означает «образующие руды».

    У атомов халькогенов одинаковое строение внешнего энергетического уровня — ns24. Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления -2, а в соединениях с кислородом и другими активными неметаллами — обычно +4 и +6. Для кислорода, как и для фтора, не типична степень окисления, равная номеру группы. Он проявляет степень окисления обычно -2 и в соединении со фтором +2. Такие значения степеней окисления следуют из электронного строения халькогенов.

    У атома кислорода на 2р-подуровне два неспаренных электрона. Его электроны не могут разъединяться, поскольку отсутствует d-подуровень на внешнем (втором) уровне, т. е. отсутствуют свободные орбитали. Поэтому валентность кислорода всегда равна двум, а степень окисления -2 и +2 (например, в Н2О и ОF2). Таковы же валентность и степени окисления у атома серы в невозбужденном состоянии. При переходе в возбужденное состояние (что имеет место при подводе энергии, например при нагревании) у атома серы сначала разъединяются Зр-, а затем 3s-электроны (показано стрелками). Числонеспаренных электронов, а, следовательно, и валентность в первом случае равны четырем (например, в SO2), а во втором — шести (например, в SO3). Очевидно, четные валентности 2, 4, 6 свойственны аналогам серы — селену, теллуру и полонию, а их степени окисления могут быть равны -2, +2, +4 и +6.

    Водородные соединения элементов подгруппы кислорода отвечают формуле Н2R (R - символ элемента): Н2О, Н2S, Н2Sе, Н2Те. Они называются хальководородами. При растворении их в воде образуются кислоты. Сила этих кислот возрастает с ростом порядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединений Н2R. Вода, диссоциирующая на ионы Н+ и ОН-, является амфотерным электролитом.

    2. Изменения в группе величины радиусов атомов и ионов, потенциала ионизации.

    Сходство и различие свойств элементов VI группы, главной подгруппы с точки зрения строения атома.

    В подгруппе кислорода с возрастанием атомного номера увеличивается радиус атомов, уменьшается энергия ионизации, характеризующая металлические свойства элементов. Поэтому в ряду 0--S--Se--Te--Ро свойства элементов изменяются от неметаллических к металлическим. В обычных условиях кислород - типичный неметалл (газ), а полоний — металл, похожий на свинец.

    С увеличением атомного ,номера элементов значение электроотрицательности элементов в подгруппе уменьшается. Отрицательная степень окисления становится все менее характерной. Окислительная степень окисления становится все менее характерной. Окислительная активность простых веществ в ряду 02--S—Se--Те снижается. Так, если сера и значительно слабее, селен непосредственно взаимодействует с водородом, то теллур с ним в реакцию не вступает.

    По значению электроотрицательности кислород уступает только фтору, поэтому в реакциях со всеми остальными элементами проявляет исключительно окислительные свойства. Сера, селен и теллур по своим свойствам . относятся к группе окислителей-восстановителей. В реакциях с сильными восстановителями проявляют окислительные свойства, а при действии сильных окислителей . они окисляются, то есть проявляют восстановительные свойства.

    Свойства

    O

    S

    Se

    Те

    Ро

    1. Порядковый номер

    8

    16

    34

    52

    84

    2. Валентные электроны

    2s24

    Зs24

    4s24

    5s25p4

    6s26p4

    3. Энергия ионизации атома, эВ

    13,62

    10,36

    9,75

    9,01

    8,43

    4.Относительная электроотрицательность

    3,50

    2,6

    2,48

    2,01

    1,76

    5. Степень окисления в соединениях

    -1, -2,

    +2

    -2, +2, +4, +6

    -2,

    +4, +6

    -2,

    +4, +6

    -2, +2

    6. Радиус атома, нм

    0,066

    0,104

    0,117 0,137

    0,164











    3.Сравнение свойств простых веществ. Свойства пероксидов и супероксидов.

    3.1Свойства кислорода.

    S + О2 = SO2.

    С графитом кислород реагирует при 700 °С

    С + О2 = СО2.

    Взаимодействие кислорода с азотом начинается лишь при 1200°С или в электрическом разряде

    N2 + О2 2NО - Q.

    Кислород реагирует и со многими сложными соединениями, например с оксидом азота (II)он реагирует уже при комнатной температуре:

    2NО + О2 = 2NО2.

    Сероводород, реагируя с кислородом при нагревании, дает серу

    2S + О2 = 2S + 2Н2О

    или оксид серы (IV)

    2S + ЗО2 = 2SО2 + 2Н2О

    в зависимости от соотношения между кислородом и сероводородом.

    В приведенных реакциях кислород является окислителем. В большинстве реакций окисления с участием кислорода выделяется тепло и свет - такие процессы называются горением.

    Еще более сильным окислителем, чем кислород О2, является озон О3.Он образуется в атмосфере при грозовых разрядах, объясняется специфический запах свежести после грозы. Обычноозон получают пропусканием разряда через кислород (реакция эндотермическая и сильно обратимая;выход озона около 5%):

    ЗО2

    3 - 284 кДж.

    При взаимодействии озона с раствором иодида калия выделяется йод, тогда как с кислородом эта реакция не идет:

    2КI + О3 + Н2О = I2 + 2КОН + О2.

    Реакция часто используется как качественная для обнаружения ионов I- или озона.Для этого в раствор добавляют крахмал, который дает характерный синий комплекс с выделившимся иодом.Реакция качественная еще и потому, что озон не окисляет ионы Сl- и Br-.

    При пропускании газообразного озона через раствор какого-либо алкена в тетрахлорметане при температуре ниже20°С образуется озонид соответствующего алкена:








    O









    /







    \



    H2C = CH2 + O3 → H2C











    CH2



    \







    /







    O



    O







    озонид этилена

    Озониды - неустойчивые соединения. Они подвергаются гидролизу с образованием альдегидов или кетонов, например:







    O









    /







    \



    H 2C









    CH2

    + H2O → CH2 = O+H2O2



    \







    /







    O



    O





    В этом случае часть метаналя (формальдегида) реагирует с пероксидом водорода, образуя метановую (муравьиную)кислоту:

    НСНО + Н2О2 → НСООН + Н2О.
      1   2   3


    написать администратору сайта