Главная страница
Навигация по странице:

  • Ограничения доступа в WWW серверах

  • Подмена одного из субъектов TCP-соединения в сети Internet (hijacking)

  • Атаки, использующие ошибки реализации сетевых служб

  • система защмиы иформации. Cистема защиты информации. Реферат на тему системы защиты информации


    Скачать 42.48 Kb.
    НазваниеРеферат на тему системы защиты информации
    Анкорсистема защмиы иформации
    Дата19.07.2022
    Размер42.48 Kb.
    Формат файлаdocx
    Имя файлаCистема защиты информации.docx
    ТипРеферат
    #633207

    Реферат на тему СИСТЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ.

    Выполнил студен группы 921 Андреев Михаил.

    Проблемы защиты информации

    Internet и информационная безопасность несовместны по самой природе Internet. Она родилась как чисто корпоративная сеть, однако, в настоящее время с помощью единого стека протоколов TCP/IP и единого адресного пространства объединяет не только корпоративные и ведомственные сети (образовательные, государственные, коммерческие, военные и т.д.), являющиеся, по определению, сетями с ограниченным доступом, но и рядовых пользователей, которые имеют возможность получить прямой доступ в Internet со своих домашних компьютеров с помощью модемов и телефонной сети общего пользования.

    Как известно, чем проще доступ в Сеть, тем хуже ее информационная безопасность, поэтому с полным основанием можно сказать, что изначальная простота доступа в Internet - хуже воровства, так как пользователь может даже и не узнать, что у него были скопированы - файлы и программы, не говоря уже о возможности их порчи и корректировки.

    Что же определяет бурный рост Internet, характеризующийся ежегодным удвоением числа пользователей? Ответ прост -"халява", то есть дешевизна программного обеспечения (TCP/IP), которое в настоящее время включено в Windows 95, легкость и дешевизна доступа в Internet (либо с помощью IP-адреса, либо с помощью провайдера) и ко всем мировым информационным ресурсам.

    Платой за пользование Internet является всеобщее снижение информационной безопасности, поэтому для предотвращения несанкционированного доступа к своим компьютерам все корпоративные и ведомственные сети, а также предприятия, использующие технологию intranet, ставят фильтры (fire-wall) между внутренней сетью и Internet, что фактически означает выход из единого адресного пространства. Еще большую безопасность даст отход от протокола TCP/IP и доступ в Internet через шлюзы.

    Этот переход можно осуществлять одновременно с процессом построения всемирной информационной сети общего пользования, на базе использования сетевых компьютеров, которые с помощью сетевой карты 10Base-T и кабельного модема обеспечивают высокоскоростной доступ (10 Мбит/с) к локальному Web-серверу через сеть кабельного телевидения.

    Для решения этих и других вопросов при переходе к новой архитектуре Internet нужно предусмотреть следующее:

    Во-первых, ликвидировать физическую связь между будущей Internet (которая превратится во Всемирную информационную сеть общего пользования) и корпоративными и ведомственными сетями, сохранив между ними лишь информационную связь через систему World Wide Web.

    Во-вторых, заменить маршрутизаторы на коммутаторы, исключив обработку в узлах IP-протокола и заменив его на режим трансляции кадров Ethernet, при котором процесс коммутации сводится к простой операции сравнения MAC-адресов.

    В-третьих, перейти в новое единое адресное пространство на базе физических адресов доступа к среде передачи (MAC-уровень), привязанное к географическому расположению сети, и позволяющее в рамках 48-бит создать адреса для более чем 64 триллионов независимых узлов.

    Безопасность данных является одной из главных проблем в Internet. Появляются все новые и новые страшные истории о том, как компьютерные взломщики, использующие все более изощренные приемы, проникают в чужие базы данных. Разумеется, все это не способствует популярности Internet в деловых кругах. Одна только мысль о том, что какие-нибудь хулиганы или, что еще хуже, конкуренты, смогут получить доступ к архивам коммерческих данных, заставляет руководство корпораций отказываться от использования открытых информационных систем. Специалисты утверждают, что подобные опасения безосновательны, так как у компаний, имеющих доступ и к открытым, и частным сетям, практически равные шансы стать жертвами компьютерного террора.

    Каждая организация, имеющая дело с какими бы то ни было ценностями, рано или поздно сталкивается с посягательством на них. Предусмотрительные начинают планировать защиту заранее, непредусмотрительные-после первого крупного "прокола". Так или иначе, встает вопрос о том, что, как и от кого защищать.

    Обычно первая реакция на угрозу-стремление спрятать ценности в недоступное место и приставить к ним охрану. Это относительно несложно, если речь идет о таких ценностях, которые вам долго не понадобятся: убрали и забыли. Куда сложнее, если вам необходимо постоянно работать с ними. Каждое обращение в хранилище за вашими ценностями потребует выполнения особой процедуры, отнимет время и создаст дополнительные неудобства. Такова дилемма безопасности: приходится делать выбор между защищенностью вашего имущества и его доступностью для вас, а значит, и возможностью полезного использования.

    Все это справедливо и в отношении информации. Например, база данных, содержащая конфиденциальные сведения, лишь тогда полностью защищена от посягательств, когда она находится на дисках, снятых с компьютера и убранных в охраняемое место. Как только вы установили эти диски в компьютер и начали использовать, появляется сразу несколько каналов, по которым злоумышленник, в принципе, имеет возможность получить к вашим тайнам доступ без вашего ведома. Иными словами, ваша информация либо недоступна для всех, включая и вас, либо не защищена на сто процентов.

    Может показаться, что из этой ситуации нет выхода, но информационная безопасность сродни безопасности мореплавания: и то, и другое возможно лишь с учетом некоторой допустимой степени риска.

    В области информации дилемма безопасности формулируется следующим образом: следует выбирать между защищенностью системы и ее открытостью. Правильнее, впрочем, говорить не о выборе, а о балансе, так как система, не обладающая свойством открытости, не может быть использована.

    В банковской сфере проблема безопасности информации осложняется двумя факторами: во-первых, почти все ценности, с которыми имеет дело банк (кроме наличных денег и еще кое-чего), существуют лишь в виде той или иной информации. Во-вторых, банк не может существовать без связей с внешним миром: без клиентов, корреспондентов и т. п. При этом по внешним связям обязательно передается та самая информация, выражающая собой ценности, с которыми работает банк (либо сведения об этих ценностях и их движении, которые иногда стоят дороже самих ценностей). Извне приходят документы, по которым банк переводит деньги с одного счета на другой. Вовне банк передает распоряжения о движении средств по корреспондентским счетам, так что открытость банка задана a priori.

    Стоит отметить, что эти соображения справедливы по отношению не только к автоматизированным системам, но и к системам, построенным на традиционном бумажном документообороте и не использующим иных связей, кроме курьерской почты. Автоматизация добавила головной боли службам безопасности, а новые тенденции развития сферы банковских услуг, целиком основанные на информационных технологиях, усугубляют проблему.

    Информационная безопасность и информационные технологии


    На раннем этапе автоматизации внедрение банковских систем (и вообще средств автоматизации банковской деятельности) не повышало открытость банка. Общение с внешним миром, как и прежде, шло через операционистов и курьеров, поэтому дополнительная угроза безопасности информации проистекала лишь от возможных злоупотреблений со стороны работавших в самом банке специалистов по информационным технологиям.

    Положение изменилось после того, как на рынке финансовых услуг стали появляться продукты, само возникновение которых было немыслимо без информационных технологий. В первую очередь это-пластиковые карточки. Пока обслуживание по карточкам шло в режиме голосовой авторизации, открытость информационной системы банка повышалась незначительно, но затем появились банкоматы, POS-терминалы, другие устройства самообслуживания-то есть средства, принадлежащие к информационной системе банка, но расположенные вне ее и доступные посторонним для банка лицам.

    Повысившаяся открытость системы потребовала специальных мер для контроля и регулирования обмена информацией: дополнительных средств идентификации и аутентификации лиц, которые запрашивают доступ к системе (PIN-код, информация о клиенте на магнитной полосе или в памяти микросхемы карточки, шифрование данных, контрольные числа и другие средства защиты карточек), средств криптозащиты информации в каналах связи и т. д.

    Еще больший сдвиг баланса "защищенность-открытость" в сторону последней связан с телекоммуникациями. Системы электронных расчетов между банками защитить относительно несложно, так как субъектами электронного обмена информацией выступают сами банки. Тем не менее, там, где защите не уделялось необходимое внимание, результаты были вполне предсказуемы. Наиболее кричащий пример - к сожалению, наша страна. Использование крайне примитивных средств защиты телекоммуникаций в 1992 г. привело к огромным потерям на фальшивых авизо.

    Общая тенденция развития телекоммуникаций и массового распространения вычислительной техники привела в конце концов к тому, что на рынке банковских услуг во всем мире появились новые, чисто телекоммуникационные продукты, и в первую очередь системы Home Banking (отечественный аналог - "клиент-банк"). Это потребовало обеспечить клиентам круглосуточный доступ к автоматизированной банковской системе для проведения операций, причем полномочия на совершение банковских транзакций получил непосредственно клиент. Степень открытости информационной системы банка возросла почти до предела. Соответственно, требуются особые, специальные меры для того, чтобы столь же значительно не упала ее защищенность.

    Наконец, грянула эпоха "информационной супермагистрали":  взрывообразное развитие сети Internet и связанных с нею услуг. Вместе с новыми возможностями эта сеть принесла и новые опасности. Казалось бы, какая разница, каким образом клиент связывается с банком: по коммутируемой линии, приходящей на модемный пул банковского узла связи, или по IP-протоколу через Internet? Однако в первом случае максимально возможное количество подключений ограничивается техническими характеристиками модемного пула, во втором же - возможностями Internet, которые могут быть существенно выше. Кроме того, сетевой адрес банка, в принципе, общедоступен, тогда как телефонные номера модемного пула могут сообщаться лишь заинтересованным лицам. Соответственно, открытость банка, чья информационная система связана с Internet, значительно выше, чем в первом случае. 

    Все это вызывает необходимость пересмотра подходов к обеспечению информационной безопасности банка. Подключаясь к Internet, следует заново провести анализ риска и составить план защиты информационной системы, а также конкретный план ликвидации последствий, возникающих в случае тех или иных нарушений конфиденциальности, сохранности и доступности информации.

    На первый взгляд, для нашей страны проблема информационной безопасности банка не столь остра: до Internet ли нам, если в большинстве банков стоят системы второго поколения, работающие в технологии "файл-сервер". К сожалению, и у нас уже зарегистрированы "компьютерные кражи". Положение осложняется двумя проблемами. Прежде всего, как показывает опыт общения с представителями банковских служб безопасности, и в руководстве, и среди персонала этих служб преобладают бывшие оперативные сотрудники органов внутренних дел или госбезопасности. Они обладают высокой квалификацией в своей области, но в большинстве своем слабо знакомы с информационными технологиями. Специалистов по информационной безопасности в нашей стране вообще крайне мало, потому что массовой эта профессия становится только сейчас. Вторая проблема связана с тем, что в очень многих банках безопасность автоматизированной банковской системы не анализируется и не обеспечивается всерьез. Очень мало где имеется тот необходимый набор организационных документов (анализ риска, план защиты и план ликвидации последствий), о котором говорилось выше. Более того, безопасность информации сплошь и рядом просто не может быть обеспечена в рамках имеющейся в банке автоматизированной системы и принятых правил работы с ней.

    Что касается автоматизированных банковских систем, то стемы второго-третьего поколений состоят из набора автономных программных модулей, запускаемых из командной строки DOS на рабочих станциях. Оператор имеет возможность в любой момент выйти в DOS из такого программного модуля. Предполагается, что это необходимо для перехода в другой программный модуль, но фактически в такой системе не существует никаких способов не только исключить запуск оператором любых других программ (от безобидной игры до программы, модифицирующей данные банковских счетов), но и проконтролировать действия оператора. Стоит заметить, что в ряде систем этих поколений, в том числе разработанных весьма уважаемыми отечественными фирмами и продаваемых сотнями, файлы счетов не шифруются, т. е. с данными в них можно ознакомиться простейшими общедоступными средствами. Многие разработчики ограничивают средства администрирования безопасности штатными средствами сетевой операционной системы: вошел в сеть -  делай, что хочешь.

    Положение меняется, но слишком медленно.Тем не менее, наши банки уделяют информационным технологиям много внимания, и достаточно быстро усваивают новое. Сеть Internet и финансовые продукты, связанные с ней, войдут в жизнь банков России быстрее, чем это предполагают скептики, поэтому уже сейчас необходимо озаботиться вопросами информационной безопасности на другом, более профессиональном уровне, чем это делалось до сих пор.

    Некоторые рекомендации:

    1. Необходим комплексный подход к информационной безопасности. Информационная безопасность должна рассматриваться как составная часть общей безопасности банка, причем,  как важная и неотъемлемая ее часть. Разработка концепции информационной безопасности должна обязательно проходить при участии управления безопасности банка. В этой концепции следует предусматривать не только меры, связанные с информационными технологиями (криптозащиту, программные средства администрирования прав пользователей, их идентификации и аутентификации, "брандмауэры" для защиты входов-выходов сети и т. п.), но и меры административного и технического характера, включая жесткие процедуры контроля физического доступа к автоматизированной банковской системе, а также средства синхронизации и обмена данными между модулем администрирования безопасности банковской системы и системой охраны.

    2. Необходимо участие сотрудников управления безопасности на этапе выбора - приобретения - разработки автоматизированной банковской системы. Это участие не должно сводиться к проверке фирмы-поставщика. Управление безопасности должно контролировать наличие надлежащих средств разграничения доступа к информации в приобретаемой системе.

    К сожалению, ныне действующие системы сертификации в области банковских систем скорее вводят в заблуждение, чем помогают выбрать средства защиты информации. Сертифицировать использование таких средств имеет право ФАПСИ, однако правом своим этот орган пользуется весьма своеобразно. Так, один высокопоставленный сотрудник ЦБ РФ (попросивший не называть его имени) рассказал, что ЦБ потратил довольно много времени и денег на получение сертификата на одно из средств криптозащиты информации (кстати, разработанное одной из организаций, входящих в ФАПСИ). Почти сразу же после получения сертификата он был отозван: ЦБ было предложено вновь пройти сертификацию уже с новым средством криптозащиты, разработанным той же организацией из ФАПСИ.

    Возникает вопрос, а что же на самом деле подтверждает сертификат? Если, как предполагает наивный пользователь, он подтверждает пригодность средства криптозащиты выполнению этой функции, то отзыв сертификата говорит о том, что при первоначальном сертифицировании ФАПСИ что-то упустило, а затем обнаружило дефект. Следовательно, данный продукт не обеспечивает криптозащиты и не обеспечивал ее с самого начала.

    Если же, как предполагают пользователи более искушенные, ФАПСИ отозвало сертификат не из-за огрехов в первом продукте, то значение сертификации этим агентством чего бы то ни было сводится к нулю. Действительно, раз "некие" коммерческие соображения преобладают над объективной оценкой продукта, то кто может гарантировать, что в первый раз сертификат был выдан благодаря высокому качеству продукта, а не по тем же "неким" соображениям?

    Отсюда следует третья практическая рекомендация: относиться сугубо осторожно к любым сертификатам и отдавать предпочтение тем продуктам, надежность которых подтверждена успешным использованием в мировой финансовой практике. Безопасность в сети Internet

    Средства защиты информации


    Сейчас вряд ли кому-то надо доказывать, что при подключении к Internet, Вы подвергаете риску безопасность Вашей локальной сети и конфиденциальность содержащейся в ней информации.

    Одним из наиболее распространенных механизмов защиты от интернетовских бандитов - "хакеров" является применение межсетевых экранов - брэндмауэров (firewalls).

    Стоит отметить, что в следствии непрофессионализма администраторов и недостатков некоторых типов брэндмауэров порядка 30% взломов совершается после установки защитных систем.

    Не следует думать, что все изложенное выше - "заморские диковины". Всем, кто еще не уверен, что Россия уверенно догоняет другие страны по числу взломов серверов и локальных сетей и принесенному ими ущербу, следует познакомиться с тематической подборкой материалов российской прессы.

    Не смотря на кажущийся правовой хаос в рассматриваемой области, любая деятельность по разработке, продаже и использованию средств защиты информации регулируется множеством законодательных и нормативных документов, а все используемые системы подлежат обязательной сертификации Государственной Технической Комиссией при президенте России.

    Ограничения доступа в WWW серверах

    • Ограничить доступ по IP адресам клиентских машин;

    • Ввести идентификатор получателя с паролем для данного вида документов.

                Такого рода ввод ограничений стал использоваться достаточно часто, т.к. многие стремятся в Internet, чтобы использовать его коммуникации для доставки своей информации потребителю. С помощью такого рода механизмов по разграничению прав доступа удобно производить саморассылку информации на получение которой существует договор.

    Доступ к приватным документам можно разрешить, либо наоборот запретить используя IP адреса конкретных машин или сеток, например: 123.456.78.9 123.456.79.

    В этом случае доступ будет разрешен (или запрещен в зависимости от контекста) для машины с IP адресом 123.456.78.9 и для всех машин подсетки 123.456.79.

    Доступ к приватным документам можно разрешить, либо наоборот запретить используя присвоенное имя и пароль конкретному пользователю, причем пароль в явном виде нигде не хранится.

    Безопасность сетей на базе семейства протоколов TCP/IP


    Заметим, что по статистике разрушение данных в вычислительных системах чаще всего происходит не из-за деятельности взломщиков, ошибок в программах или действий вирусов (17%) либо технических отказов (16%), а из-за ошибок и несанкционированных действий пользователей (67%).

    Сначала вкратце рассмотрим особенности семейства протоколов TCP/IP и сетей на его основе. Итак, стек протоколов TCP/IP включает в себя:

    • IP (Internet Protocol) - межсетевой протокол, который обеспечивает транспортировку без дополнительной обработки данных с одной машины на другую;

    • UDP (User Datagram Protocol) - протокол пользовательских датаграмм, обеспечивающий транспортировку отдельных сообщений с помощью IP без проверки ошибок;

    • TCP (Transmission Control Protocol) - протокол управления передачей, обеспечивающий транспортировку с помощью IP с проверкой установления соединения;

    • ICMP (Internet Control Message Protocol) - межсетевой протокол управления сообщениями, который отвечает за различные виды низкоуровневой поддержки протокола IP, включая сообщения об ошибках, содействие в маршрутизации, подтверждение в получении сообщения;

    • ARP (Address Resolution Protocol) - протокол преобразования адресов, выполняющий трансляцию логических сетевых адресов в аппаратные;

    Каждый компьютер, подключаемый к Internet, получает свой уникальный IP-адрес.

    Основные понятия компьютерной безопасности


    Угроза безопасности компьютерной системы - это потенциально возможное происшествие, которое может оказать нежелательное воздействие на саму систему, а также на информацию, хранящуюся в ней.

    Уязвимость компьютерной системы - это некая ее неудачная характеристика, которая делает возможным возникновение угрозы.

    Наконец, атака на компьютерную систему - это действие, предпринимаемое злоумышленником, которое заключается в поиске и использовании той или иной уязвимости.

    Исследователи обычно выделяют три основных вида угроз безопасности - это угрозы раскрытия, целостности и отказа в обслуживании.
    Угроза раскрытия заключается том, что информация становится известной тому, кому не следовало бы ее знать. Иногда вместо слова "раскрытие" используются термины "кража" или "утечка".

    Угроза целостности включает в себя любое умышленное изменение данных, хранящихся в вычислительной системе или передаваемых из одной системы в другую. Обычно считается, что угрозе раскрытия подвержены в большей степени государственные структуры, а угрозе целостности - деловые или коммерческие.

    Угроза отказа в обслуживании возникает всякий раз, когда в результате некоторых действий блокируется доступ к некоторому ресурсу вычислительной системы. Реально блокирование может быть постоянным, так чтобы запрашиваемый ресурс никогда не был получен, или оно может вызвать только задержку запрашиваемого ресурса, достаточно долгую для того, чтобы он стал бесполезным. В таких случаях говорят, что ресурс исчерпан.

    В локальных вычислительных системах (ВС) наиболее частыми являются угрозы раскрытия и целостности, а в глобальных на первое место выходит угроза отказа в обслуживании.

    Особенности безопасности компьютерных сетей


    Основной особенностью любой сетевой системы является то, что её компоненты распределены в пространстве и связь между ними физически осуществляется при помощи сетевых соединений (коаксиальный кабель, витая пара, оптоволокно и т. п.) и программно при помощи механизма сообщений. При этом все управляющие сообщения и данные, пересылаемые между объектами распределенной вычислительной системы, передаются по сетевым соединениям в виде пакетов обмена.

    Сетевые системы характерны тем, что, наряду с обычными (локальными) атаками, осуществляемыми в пределах одной компьютерной системы, к ним применим специфический вид атак, обусловленный распределенностью ресурсов и информации в пространстве. Это так называемые сетевые (или удалённые) атаки (remote или network attacks). Они характеризуются, во-первых, тем, что злоумышленник может находиться за тысячи километров от атакуемого объекта, и, во-вторых, тем, что нападению может подвергаться не конкретный компьютер, а информация, передающаяся по сетевым соединениям. С развитием локальных и глобальных сетей именно удалённые атаки становятся лидирующими как по количеству попыток, так и по успешности их применения и, соответственно, обеспечение безопасности ВС с точки зрения противостояния удалённым атакам приобретает первостепенное значение.

    Классификация компьютерных атак


    Формы организации атак весьма разнообразны, но в целом все они принадлежат к одной из следующих категорий:

    • Удаленное проникновение в компьютер: программы, которые получают неавторизованный доступ к другому компьютеру через Интернет (или локальную сеть);

    • Локальное проникновение в компьютер: программы, которые получают неавторизованный доступ к компьютеру, на котором они работают;

    • Удаленное блокирование компьютера: программы, которые через Интернет (или сеть) блокируют работу всего удаленного компьютера или отдельной программы на нем;

    • Локальное блокирование компьютера: программы, которые блокируют работу компьютера, на котором они работают;

    • Сетевые сканеры: программы, которые осуществляют сбор информации о сети, чтобы определить, какие из компьютеров и программ, работающих на них, потенциально уязвимы к атакам;

    • Сканеры уязвимых мест программ: программы, проверяют большие группы компьютеров в Интернет в поисках компьютеров, уязвимых к тому или иному конкретному виду атаки;

    • Вскрыватели паролей: программы, которые обнаруживают легко угадываемые пароли в зашифрованных файлах паролей;

    • Сетевые анализаторы (sniffers): программы, которые слушают сетевой трафик. Часто в них имеются возможности автоматического выделения имен пользователей, паролей и номеров кредитных карт из трафика;

    • Модификация передаваемых данных или подмена информации;

    • Подмена доверенного объекта распределённой ВС (работа от его имени) или ложный объект распределённой ВС (РВС).

    • Социальная инженерия - несанкционированный доступ к информации иначе, чем взлом программного обеспечения. Цель - обхитрить людей для получения паролей к системе или иной информации, которая поможет нарушить безопасность системы;

    Статистика самых распространенных атак


    Это ещё одна атака, связанная с внедрением в РВС ложного объекта. Маршрутизация в Internet осуществляется на сетевом уровне (IP-уровень). Для её обеспечения в памяти сетевой ОС каждого хоста существуют таблицы маршрутизации, содержащие данные о возможных маршрутах. Каждый сегмент сети подключен к глобальной сети Internet как минимум через один маршрутизатор. Все сообщения, адресованные в другие сегменты сети, направляются на маршрутизатор, который, в свою очередь, перенаправляет их далее по указанному в пакете IP-адресу, выбирая при этом оптимальный маршрут.

    Как говорилось ранее, в сети Internet существует управляющий протокол ICMP, одно из назначений которого состоит в динамическом изменении таблицы маршрутизации оконечных сетевых систем. Удалённое управление маршрутизацией реализовано в виде передачи на хост управляющего ICMP-сообщения Redirect Message.

    Для осуществления данной атаки необходимо подготовить ложное ICMP-сообщение Redirect Datagrams for the Host, где указать адрес хоста, маршрут к которому будет изменён, и IP-адрес ложного маршрутизатора. Затем это сообщение передаётся на атакуемый хост от имени маршрутизатора. Эта атака позволяет получить контроль над трафиком между этим хостом и интересующим взломщика сервером, если хост и взломщик находятся в одном сегменте, или нарушить работоспособность хоста, если они располагаются в разных сегментах.

    Защититься от этого воздействия можно фильтрацией проходящих ICMP-сообщений при помощи систем Firewall. Другой способ заключается в изменении сетевого ядра ОС, чтобы запретить реакцию на ICMP-сообщение Redirect.

    Анализ сетевого трафика сети Internet


    Одним из способов получения паролей и идентификаторов пользователей в сети Internet является анализ сетевого трафика. Сетевой анализ осуществляется с помощью специальной пpогpаммы - анализатоpа пакетов (sniffer), перехватывающей все пакеты, передаваемые по сегменту сети, и выделяющей среди них те, в которых передаются идентификатор пользователя и его пароль.

    Во многих протоколах данные передаются в открытом, незашифрованном виде. Анализ сетевого трафика позволяет перехватывать данные, передаваемые по протоколам FTP и TELNET (пароли и идентификаторы пользователей), HTTP (передача гипертекста между WEB-сервером и браузером, в том числе и вводимые пользователем в формы на web-страницах данные), SMTP, POP3, IMAP, NNTP (электронная почта и конференции) и IRC (online-разговоры, chat). Так могут быть перехвачены пароли для доступа к почтовым системам с web-интерфейсом, номера кредитных карт при работе с системами электронной коммерции и различная информация личного характера, разглашение которой нежелательно.

    В настоящее время разработаны различные протоколы обмена, позволяющие защитить сетевое соединение и зашифровать трафик . К сожалению, они ещё не сменили старые протоколы и не стали стандартом для каждого пользователя. В определённой степени их распространению помешали существующие в ряде стран ограничения на экспорт средств сильной криптографии. Из-за этого реализации данных протоколов либо не встраивались в программное обеспечение, либо значительно ослаблялись (ограничивалась максимальная длина ключа), что приводило к практической бесполезности их, так как шифры могли быть вскрыты за приемлемое время.

    Ложный ARP-сервер в сети Internet


    Для адресации IP-пакетов в сети Internet кроме IP-адреса хоста необходим еще либо Ethernet-адрес его сетевого адаптера (в случае адресации внутри одной подсети), либо Ethernet-адрес маршрутизатора (в случае межсетевой адресации). Первоначально хост может не иметь информации о Ethernet-адресах других хостов, находящихся с ним в одном сегменте, в том числе и о Ethernet-адресе маршрутизатора. Следовательно, перед хостом встает стандартная проблема, решаемая с помощью алгоритма удаленного поиска.

    В сети Internet для решения этой проблемы используется протокол ARP (Address Resolution Protocol). Протокол ARP позволяет получить взаимно однозначное соответствие IP- и Ethernet-адресов для хостов, находящихся внутри одного сегмента. Этот протокол работает следующим образом: при первом обращении к сетевому ресурсу хост отправляет широковещательный ARP-запрос, в котором указывает IP-адрес нужного ресурса (маршрутизатора или хоста) и просит сообщить его Ethernet-адрес. Этот запрос получают все станции в данном сегменте сети, в том числе и та, адрес которой ищется. Получив этот запрос, хост вносит запись о запросившей станции в свою ARP-таблицу, а затем отправляет на запросивший хост ARP-ответ со своим Ethernet-адресом. Полученный в ARP-ответе Ethernet-адрес заносится в ARP-таблицу, находящуюся в памяти ОС на запросившем хосте.

    Из-за использования в РВС алгоритмов удаленного поиска, существует возможность осуществления в такой сети типовой удаленной атаки "Ложный объект РВС" Общая схема этой атаки такова:

    • ожидание ARP-запроса;

    • при получении ARP-запроса передача по сети на запросивший хост ложного ARP-ответа, в котором указывается адрес сетевого адаптера атакующей станции (ложного ARP-сервера) или тот Ethernet-адрес, на котором будет принимать пакеты ложный ARP-сервер;

    • прием, анализ, воздействие и передача пакетов обмена между взаимодействующими хостами (воздействие на перехваченную информацию);

    Самое простое решение по ликвидации данной атаки - создание сетевым администратором статической ARP-таблицы в виде файла, куда вносится информация об адресах, и установка этого файла на каждый хост внутри сегмента.

    Ложный DNS-сервер в сети Internet


    Как известно, для обращения к хостам в сети Internet используются 32-разрядные IP-адреса, уникально идентифицирующие каждый сетевой компьютер. Но для пользователей применение IP-адресов при обращении к хостам является не слишком удобным и далеко не самым наглядным. Поэтому для их удобства было принято решение присвоить всем компьютерам в Сети имена, что в свою очередь потребовало преобразования этих имён в IP-адреса, так как на сетевом уровне адресация пакетов идёт не по именам, а по IP-адресам.

    Первоначально, когда в сети Internet было мало компьютеров, для решения проблемы преобразования имён в адреса существовал специальный файл (так называемый hosts-файл), в котором именам в соответствие ставились IP-адреса. Файл регулярно обновлялся и рассылался по Сети. По мере развития Internet, число объединённых в Сеть хостов увеличивалось, и такая схема становилась всё менее работоспособной. Поэтому ей на смену пришла новая система преобразования имён, позволяющая пользователю получить IP-адрес, соответствующий определённому имени, от ближайшего информационно-поискового сервера (DNS-сервера). Этот способ решения проблемы получил название Domain Name System (DNS - доменная система имён). Для реализации этой системы был разработан протокол DNS.

    Алгоритм работы DNS-службы такой:

    1. Хост посылает на IP-адрес ближайшего DNS-сервера DNS-запрос, в котором указывается имя сервера, IP-адрес которого требуется найти.

    2. DNS-сервер при получении такого запроса ищет указанное имя в своей базе имён. Если оно и соответствующий ему IP-адрес найдены, то DNS-сервер отправляет на хост DNS-ответ, в котором указывает этот адрес. Если имя не найдено в своей базе имён, то DNS-сервер пересылает DNS-запрос на один из ответственных за домены верхнего уровня DNS-серверов. Эта процедура повторяется, пока имя не будет найдено или будет не найдено.

    Как видно из приведённого алгоритма, в сети, использующей протокол DNS, возможно внедрение ложного объекта - ложного DNS-сервера.

    Так как по умолчанию служба DNS функционирует на базе протокола UDP, не предусматривающего, в отличие от TCP, средств идентификации сообщений, это делает её менее защищённой.

    Возможна такая схема работы ложного DNS-сервера:

    1. Ожидание DNS-запроса.

    2. Извлечение из полученного сообщения необходимых сведений и передача за запросивший хост ложного DNS-ответа от имени (с IP-адреса) настоящего DNS-сервера и с указанием в этом ответе IP-адреса ложного DNS-сервера.

    3. При получении пакета от хоста - изменение в IP-заголовке пакета его IP-адреса на IP-адрес ложного DNS-сервера и передача пакета на сервер. Ложный DNS-сервер ведёт работу с сервером от своего имени.

    4. При получении пакета от сервера - изменение в IP-заголовке пакета его IP-адреса на адрес ложного DNS-сервера и передача пакета на хост. Ложный DNS-сервер для хоста является настоящим сервером.

    Возможны два варианта реализации этой атаки. В первом случае необходимым условием является перехват DNS-запроса, что требует нахождения атакующего либо на пути основного трафика, либо в одном сегменте с DNS-сервером. Во втором случае создаётся направленный шторм ложных заранее подготовленных DNS-ответов на атакуемый хост.

    В Internet при использовании существующей версии службы DNS нет приемлемого решения для защиты от ложного DNS-сервера. Можно отказаться от механизма удалённого поиска и вернуться к методу с файлом hosts, как это было до появления службы DNS, но на сегодняшний день в этот файл можно лишь внести информацию о наиболее часто посещаемых адресах.

    Также для затруднения данной атаки можно предложить использовать протокол TCP вместо UDP, хотя из документации не всегда известно, как это сделать, да и использование TCP всё равно не обеспечивает полную безопасность.

    Навязывание хосту ложного маршрута с использованием протокола ICMP с целью создания в сети Internet ложного маршрутизатора


    Это ещё одна атака, связанная с внедрением в РВС ложного объекта. Маршрутизация в Internet осуществляется на сетевом уровне (IP-уровень). Для её обеспечения в памяти сетевой ОС каждого хоста существуют таблицы маршрутизации, содержащие данные о возможных маршрутах. Каждый сегмент сети подключен к глобальной сети Internet как минимум через один маршрутизатор. Все сообщения, адресованные в другие сегменты сети, направляются на маршрутизатор, который, в свою очередь, перенаправляет их далее по указанному в пакете IP-адресу, выбирая при этом оптимальный маршрут.

    Как говорилось ранее, в сети Internet существует управляющий протокол ICMP, одно из назначений которого состоит в динамическом изменении таблицы маршрутизации оконечных сетевых систем. Удалённое управление маршрутизацией реализовано в виде передачи на хост управляющего ICMP-сообщения Redirect Message.

    Для осуществления данной атаки необходимо подготовить ложное ICMP-сообщение Redirect Datagrams for the Host, где указать адрес хоста, маршрут к которому будет изменён, и IP-адрес ложного маршрутизатора. Затем это сообщение передаётся на атакуемый хост от имени маршрутизатора. Эта атака позволяет получить контроль над трафиком между этим хостом и интересующим взломщика сервером, если хост и взломщик находятся в одном сегменте, или нарушить работоспособность хоста, если они располагаются в разных сегментах.

    Защититься от этого воздействия можно фильтрацией проходящих ICMP-сообщений при помощи систем Firewall. Другой способ заключается в изменении сетевого ядра ОС, чтобы запретить реакцию на ICMP-сообщение Redirect.

    Подмена одного из субъектов TCP-соединения в сети Internet (hijacking) Протокол TCP (Transmission Control Protocol) является одним из базовых протоколов транспортного уровня сети Internet. Он позволяет исправлять ошибки, которые могут возникнуть в процессе передачи пакетов, устанавливая логическое соединение - виртуальный канал. По этому каналу передаются и принимаются пакеты с регистрацией их последовательности, осуществляется управление информационным потоком, организовывается повторная передача искаженных пакетов, а в конце сеанса канал разрывается. 

    Для идентификации TCP-пакета в TCP-заголовке существуют два 32-разрядных идентификатора, которые также играют роль счетчика пакетов. Их названия - Sequence Number (номер последовательности) и Acknowledgment Number (номер подтверждения).

    Для формирования ложного TCP-пакета атакующему необходимо знать текущие идентификаторы для данного соединения. Это значит, что ему достаточно, подобрав соответствующие текущие значения идентификаторов TCP-пакета для данного TCP-соединения послать пакет с любого хоста в Сети от имени одного из участников данного соединения, и данный пакет будет воспринят как верный.

    При нахождении взломщика и объекта атаки в одном сегменте, задача получения значений идентификаторов решается анализом сетевого трафика. Если же они находятся в разных сегментах, приходится пользоваться математическим предсказанием начального значения идентификатора экстраполяцией его предыдущих значений.

    Для защиты от таких атак необходимо использовать ОС, в которых начальное значение идентификатора генерируется действительно случайным образом. Также необходимо использовать защищённые протоколы типа SSL, S-HTTP, Kerberos и т.д.

    Направленный шторм ложных TCP-запросов на создание соединения


    а каждый полученный TCP-запрос на создание соединения операционная система должна сгенерировать начальное значение идентификатора ISN и отослать его в ответ на запросивший хост. При этом, так как в сети Internet (стандарта IPv4) не предусмотрен контроль за IP-адресом отправителя сообщения, то невозможно отследить истинный маршрут, пройденный IP-пакетом, и, следовательно, у конечных абонентов сети нет возможности ограничить число возможных запросов, принимаемых в единицу времени от одного хоста. Поэтому возможно осуществление типовой атаки "Отказ в обслуживании", которая будет заключаться в передаче на атакуемый хост как можно большего числа ложных TCP-запросов на создание соединения от имени любого хоста в сети. При этом атакуемая сетевая ОС в зависимости от вычислительной мощности компьютера либо - в худшем случае - практически зависает, либо - в лучшем случае - перестает реагировать на легальные запросы на подключение (отказ в обслуживании).

    Это происходит из-за того, что для всей массы полученных ложных запросов система должна, во-первых, сохранить в памяти полученную в каждом запросе информацию и, во-вторых, выработать и отослать ответ на каждый запрос. Таким образом, все ресурсы системы "съедаются" ложными запросами: переполняется очередь запросов, и система занимается только их обработкой.

    Недавно в Сети был отмечен новый тип атак. Вместо типичных атак Denial of Service хакеры переполняют буфер пакетов корпоративных роутеров не с единичных машин, а с целых тысяч компьютеров-зомби.

    Такие атаки способны блокировать каналы мощностью вплоть до Т3 (44.736 Мбит/c) и уже отмечено несколько таких случаев. Опасность атаки становится тем важнее, чем больше бизнесов используют частные сети типа VPN и другие Интернет-технологии. Ведь отказ канала у публичного провайдера приведет в этом случае не просто к отключению отдельных пользователей, а к остановке работы огромных корпораций.

    В этом случае существуют трудности в определении источника атаки - ложные пакеты идут с различных неповторяющихся IP-адресов. "Зомби-атаку" называют самой сложной из известных. На одинокую жертву нападает целая армия, и каждый зомби бьет только один раз.

    Приемлемых способов защиты от подобных атак в сети стандарта IPv4 нет, так как невозможен контроль за маршрутом сообщений. Для повышения надёжности работы системы можно использовать по возможности более мощные компьютеры, способные выдержать направленный шторм ложных запросов на создание соединения.

    Атаки, использующие ошибки реализации сетевых служб

    Помимо перечисленных атак существуют и различные атаки, направленные против конкретных платформ. Например:

    • Атака Land - формируется IP-пакет, в котором адрес отправителя совпадает с адресом получателя. Этой уязвимости подвержены все версии ОС семейства Windows до Windows NT 4.0 Service Pack 4 включительно. При поступлении таких запросов доступ к системе становится невозможным.

    • Атаки teardrop и bonk - основаны на ошибках разработчиков ОС в модуле, отвечающем за сборку фрагментированных IP-пакетов. При этом происходит копирование блока отрицательной длины либо после сборки фрагментов в пакете остаются "дырки" - пустые, не заполненные данными места, что также может привести к сбою ядра ОС. Обе эти уязвимости присутствовали в ОС Windows95/NT до Service Pack 4 включительно и в ранних версиях ОС Linux (2.0.0).

    • WinNuke - атака Windows-систем передачей пакетов TCP/IP с флагом Out Of Band (OOB) на открытый (обычно 139-й) TCP-порт. На сегодняшний день эта атака устарела. Ранние версии Windows95/NT зависали.

    Существуют и различные другие атаки, характерные лишь для определённых ОС.

    Атака через WWW


    В последние несколько лет с бурным развитием World Wide Web сильно увеличилось и число атак через Web. В целом все типы атак через Web можно разделить на две большие группы:

    1. Атака на клиента

    2. Атака на сервер

    В своём развитии браузеры ушли очень далеко от первоначальных версий, предназначенных лишь для просмотра гипертекста. Функциональность браузеров постоянно увеличивается, сейчас это уже полноценный компонент ОС. Параллельно с этим возникают и многочисленные проблемы с безопасностью используемых технологий, таких как подключаемые модули (plug-ins), элементы ActiveX, приложения Java, средства подготовки сценариев JavaScript, VBScript, PerlScript, Dynamic HTML.

    Благодаря поддержке этих технологий не только браузерами, но и почтовыми клиентами и наличию ошибок в них в последние год-два появилось большое количество почтовых вирусов, а также вирусов, заражающих html-файлы (реализованные на VBScript с использованием ActiveX-объектов). Сильно распространены троянцы. 

    Безопасность серверного ПО в основном определяется отсутствием следующих типов ошибок:

    • Ошибки в серверах: ошибки, приводящие к утрате конфиденциальности; ошибки, приводящие к атакам типа "отказ в обслуживании" и ошибки, приводящие к выполнению на сервере неавторизованного кода.

    • Ошибки во вспомогательных программах

    • Ошибки администрирования

    Методы защиты от удалённых атак в сети Internet


    Наиболее простыми и дешёвыми являются административные методы защиты, как то использование в сети стойкой криптографии, статических ARP-таблиц, hosts файлов вместо выделенных DNS-серверов, использование или неиспользование определённых операционных систем и другие методы.

    Следующая группа методов защиты от удалённых атак - программно-аппаратные. К ним относятся:

    • программно-аппаратные шифраторы сетевого трафика;

    • методика Firewall;

    • защищённые сетевые криптопротоколы;

    • программные средства обнаружения атак (IDS - Intrusion Detection Systems или ICE - Intrusion Countermeasures Electronics);

    • программные средства анализа защищённости (SATAN - Security Analysis Network Tool for Administrator, SAINT, SAFEsuite, RealSecure и др.);

    • защищённые сетевые ОС.

    В общем случае методика Firewall реализует следующие основные функции:

    1. Многоуровневая фильтрация сетевого трафика;

    2. Proxy-схема с дополнительной идентификацией и аутентификацией пользователей на Firewall-хосте. Смысл proxy-схемы заключается в создании соединения с конечным адресатом через промежуточный proxy-сервер на хосте Firewall;

    3. Создание приватных сетей с "виртуальными" IP-адресами. Используется для скрытия истинной топологии внутренней IP-сети.

    Здесь можно выделить подгруппу методов защиты - программные методы. К ним относятся прежде всего защищённые криптопротоколы, используя которые можно повысить надёжность защиты соединения.


    написать администратору сайта