Перспективы развития и применения мониторов. Реферат Перспективы развития и применения мониторов Красноярск 2009 Перспективы развития и применения мониторов
Скачать 25.84 Kb.
|
Министерство образования и науки Российской Федерации Московский государственный университет экономики, статистики и информатики Красноярский филиал Кафедра экономических информационных систем и информационных технологий Реферат Перспективы развития и применения мониторов Красноярск 2009 Перспективы развития и применения мониторов На протяжении всей истории персональных компьютеров их неизменными спутниками оставались мониторы, построенные на основе использования электронно-лучевых трубок (ЭЛТ). Известно, что изображение в таких мониторах создается за счет излучения света люминофором, который размещается на внутренней поверхности трубки. Активируется люминофор в результате его бомбардировки заряженными частицами, выпускаемыми электронной пушкой, располагающейся в основании катодной трубки. Именно благодаря такой конструкции ЭЛТ - мониторы обладают большими габаритами, которые практически не представляется возможным уменьшить без резкой потери качества изображения. Еще одним минусом при работе за таким монитором является то, что здоровье пользователя постоянно находится под ударом: усталость глаз и постепенное снижение зрения, постоянное облучение и нахождение в статическом поле. Рассмотрим альтернативные технологии производства мониторов от уже довольно распространенной LCD и до еще таких довольно экзотических, как PDP и LEP. LCD-мониторы Широко распространенной альтернативой электронно-лучевым мониторам выступают матрицы на жидких кристаллах (Liquid Crystal Display или LCD). Впервые эту технологию стали применять на рынке портативных компьютеров. Первые LCD-мониторы были монохромными, унаследовав эту особенность у своих предшественников — экранов для наручных часов и калькуляторов. Впоследствии на свет появились и цветные образцы. В основе технологии, по которой создаются жидкокристаллические мониторы, лежат особые физико-химические свойства группы веществ, которые условно называют жидкими кристаллами. Принцип формирования изображения на LCD-мониторе аналогичен ЭЛТ - мониторам, то есть при помощи точек-пикселей. Однако, вместо луча электронной пушки, бьющего в слой люминофора, мы имеем дело с большим количеством электродов, каждый из которых и отвечает за единичный пиксель изображения. Эволюция ЖК - мониторов За свою не столь долгую историю жидкокристаллические матрицы, а, следовательно, и мониторы на жидких кристаллах успели пережить смену нескольких поколений. Самыми первыми появились LCD-мониторы с так называемой пассивной матрицей, активно использовавших технологию STN (Super Twisted Nematic), которая увеличивала угол кручения молекул внутри матрицы монитора до 270°, повышая тем самым общую контрастность изображения. Пассивные мониторы подразумевали наличие обособленных электродов, каждый их которых отвечал за формирование отдельного пикселя изображения независимо от других, т.е. подсветка осуществлялась попиксельно. Сам термин "пассивная" указывал на то, что электроемкость каждой ячейки требовала определенного времени на смену напряжения, что в результате приводило к тому, что все изображения перерисовывалось довольно долго, буквально строка за строкой. Таким образом, на пассивных матрицах еще можно было работать в офисных программах, в то время как динамическое изображение казалось заторможенным и размазанным. Кроме того, электроды довольно часто интерферировали друг с другом, создавая тем самым некрасивые разводы. Впоследствии на смену пришла технология двойного сканирования, которая заключалась в следующем. Вся активная область экрана разделялась на две части. Таким образом, прорисовывание изображения происходило параллельно в обеих частях. Как следствие, частота обновления удваивается, а смазанность и дрожь практически исчезает. Сегодня еще можно встретить портативные компьютеры, использующие матрицы двойного сканирования. Однако, мониторы для персональных компьютеров изготавливаются уже по другим принципам. Более дорогой, чем в случае с двойным сканированием, но, соответственно, и более качественный способ отображения экрана на жидкокристаллический монитор — это применение так называемых активных матриц. В этом случае также действует принцип "один электрод — одна ячейка", однако каждый пиксель экрана обслуживает еще и дополнительный элемент, который, во-первых, снижает время, уходящее на смену напряжения на электроде (практически в шесть раз по сравнению с пассивной матрицей), а во-вторых, устраняет опасность взаимодействия соседних ячеек друг с другом. В результате повышаются практически все параметры изображения: четкость, яркость и скорость перерисовки. Благодаря прикрепленному к каждой ячейке транзистору матрица "помнит" состояние всех элементов экрана и сбрасывает его только в момент получения команды на обновление. Кроме того, увеличивается угол обзора, что в свое время было большой проблемой: при отклонении головы пользователя от перпендикулярного по отношению к монитору состояния изображения начинало тухнуть и смазываться. Самой же последней технологией в мире LCD-мониторов следует считать внедрение тонкопленочных компьютеров, или TFT (Thin Film Transistor). Это сверхтонкие пленки, толщина которых измеряется сотыми долями микрона. Матрица такого монитора состоит из огромного количества микроскопических транзисторов. К сожалению, продвижение этой технологии к массовому пользователю затруднено слишком дорогим и капризным технологическим процессом, во многом схожим с выращиванием кристаллов для подложки процессоров. Плазменные экранные матрицы (PDP-мониторы) Прообразом для создания плазменных экранных матриц (Plasma Display Panels) стали самые обычные лампы дневного освещения. Плазменные мониторы состоят из полой стеклянной панели, заполненной газом. На поверхность внутренней стороны стенок выведены микроскопические электроды, образующие две симметричные матрицы, а снаружи эта конструкция покрыта слоем люминофора. Когда на контакты подается ток, между ними возникает крошечный разряд, который заставляет светиться (в ультрафиолетовой части спектра) располагающиеся рядом молекулы газа. Следствием этого является освещение участка люминофора, как это происходит в обычных ЭЛТ - мониторах. Основные плюсы этой технологии это: во-первых, плазменные мониторы выгодно отличаются от своих конкурентов высокой яркостью и контрастностью изображения; во-вторых, в их габаритах составляющая толщины представляет собой ничтожно малую долю. Основные минусы, не позволяющие использовать эту технологию для производства мониторов, это низкая разрешающая способность и крайне высокая энергоемкость. Кроме того, стоимость таких устройств является заоблачной для массового пользователя. Да и проблемы с цветопередачей для PDP также актуальны, как и для всех прочих решений, отличных от ЭЛТ. Впрочем, сегодня еще рано судить о том, какая из существующих технологий придет на смену ЭЛТ. При современных темпах разработок и внедрения ответ на этот вопрос мы должны получить в течение ближайших трех лет. Светоизлучающие пластики (LEP) Иная альтернатива развития мониторов, не связанная с существующими наработками, — технология изготовления и использования дисплеев на основе так называемых светоизлучающих пластиков. LEP (Light Emission Plastics) необычайно просты и дешевы в производстве. В принципе, LEP-дисплей представляет собой многослойный набор тончайших полимерных пленок. Даже по сравнению с экранами на жидких кристаллах пластиковые мониторы кажутся совсем тонкими — всего пары миллиметров вполне достаточно для воспроизводства на них качественного изображения. По многим же параметрам светоизлучающие пластики превосходят всех своих конкурентов. Они не подвержены инверсионным эффектам, что позволяет менять картинку на таком дисплее с очень высокой частотой. Для работы LEP расходуют электрический ток слабого напряжения, да и вообще отличаются низкой электроемкостью. Кроме того, то, что пластик сам излучает, а не использует отраженный или прямой поток от другого источника, позволяет забыть о тех проблемах, с которыми сталкиваются производители мониторов на жидких кристаллах, в частности — ограниченного угла обзора. Конечно, не обошли эту еще молодую технологию и свои специфические проблемы, такие, например, как ограниченный срок службы полимерных матриц, который сегодня намного меньше, чем у электронных трубок и ЖК-дисплеев. Другая проблема касается воспроизведения светоизлучающим пластиком цветных изображений. Таким образом, подводя итог всему вышесказанному, хочу отметить тот факт, что в ближайшие три года прямым наследником ЭЛТ - мониторов будет все-таки LCD-мониторы. Эта технология развивается уже довольно давно по компьютерным меркам, что дает основание говорить о том, что техпроцесс все улучшается, а себестоимость продукции падает, становясь все более доступной массовому пользователю. Источник: http://www.nestor.minsk.by/kg |