АУЖЦП-реферат. Реферат по дисциплине Автоматизация управления жизненным циклом продукции по теме Лингвистическое и программное обеспечение calsтехнологий
Скачать 2.11 Mb.
|
Кафедра АТПП Реферат по дисциплине «Автоматизация управления жизненным циклом продукции» по теме: «Лингвистическое и программное обеспечение CALS-технологий» Выполнил: студент гр. ЗАТу-1-20 Полутяглов П.С. Преподаватель: к.т.н., доцент каф. АТПП, Борисова О.В. Казань 2022 Содержание Введение_________________________________________________________3 Основные положения и принципы CALS____________________________6 Примеры PDM_________________________________________________15 Этапы жизненного цикла изделий и промышленные автоматизированные системы_________________________________________________________19 Интегрированные электронно-технические руководства. Примеры______27 5. Стандарт ISO/IEC 15288_________________________________________34 6. Структура стандартов STEP______________________________________37 Литература______________________________________________________44 Введение CALS-технологии призваны служить средством, интегрирующим промышленные автоматизированные системы в единую многофункциональную систему. Целью интеграции автоматизированных систем проектирования и управления является повышение эффективности создания и использования сложной техники. В чем выражается повышение эффективности? Во-первых, повышается качество изделий за счет более полного учета имеющейся информации при проектировании и принятии управленческих решений. Так, обоснованность решений, принимаемых в автоматизированной системе управления предприятием (АСУП), будет выше, если ЛПР (лицо, принимающее решение) и соответствующие программы АСУП имеют оперативный доступ не только к базе данных АСУП, но и к базам данных других автоматизированных систем (САПР, АСТПП и АСУТП) и, следовательно, могут оптимизировать планы работ, содержание заявок, распределение исполнителей, выделение финансов и т.п. При этом под оперативным доступом следует понимать не просто возможность считывания данных из БД, но и легкость их правильной интерпретации, т.е. согласованность по синтаксису и семантике с протоколами, принятыми в АСУП. То же относится и к другим системам, например, технологические подсистемы должны с необходимостью воспринимать и правильно интерпретировать данные, поступающие от подсистем автоматизированного конструирования. Этого не так легко добиться, если основное предприятие и организации-смежники работают с разными автоматизированными системами. Во-вторых, сокращаются материальные и временные затраты на проектирование и изготовление продукции. Применение CALS-технологий позволяет существенно сократить объемы проектных работ, так как описания ранее выполненных удачных разработок компонентов и устройств, многих составных частей оборудования, машин и систем, проектировавшихся ранее, хранятся в базах данных сетевых серверов, доступных любому пользователю CALS-технологии. Доступность опять же обеспечивается согласованностью форматов, способов, руководств в разных частях общей интегрированной системы. Кроме того, появляются более широкие возможности для специализации предприятий, вплоть до создания виртуальных предприятий, что также способствует снижению затрат. В-третьих, существенно снижаются затраты на эксплуатацию, благодаря реализации функций интегрированной логистической поддержки. Существенно облегчается решение проблем ремонтопригодности, интеграции продукции в различного рода системы и среды, адаптации к меняющимся условиям эксплуатации и т.п. Эти преимущества интеграции данных достигаются применением современных CALS-технологий. Промышленные автоматизированные системы могут работать автономно, и в настоящее время так обычно и происходит. Однако эффективность автоматизации будет заметно выше, если данные, генерируемые в одной из систем, будут доступны в других системах, поскольку принимаемые в них решения станут более обоснованными. Чтобы достичь должного уровня взаимодействия промышленных автоматизированных систем требуется создание единого информационного пространства в рамках как отдельных предприятий, так и, что более важно, в рамках объединения предприятий. Единое информационное пространство обеспечивается благодаря унификации как формы, так и содержания информации о конкретных изделиях на различных этапах их жизненного цикла. Унификация формы достигается использованием стандартных форматов и языков представления информации в межпрограммных обменах и при документировании. Унификация содержания, понимаемая как однозначная правильная интерпретация данных о конкретном изделии на всех этапах его жизненного цикла, обеспечивается разработкой онтологий (метаописаний) приложений, закрепляемых в прикладных протоколах CALS. Унификация перечней и наименований сущностей, атрибутов и отношений в определенных предметных областях является основой для единого электронного описания изделия в CALS-пространстве. 1. Основные положения и принципы CALS Исторически по ряду объективных и субъективных причин многие подсистемы САПР и АСУ создавались как автономные системы, не ориентированные на взаимодействие с другими АС. При этом каждая из АС успешно решает определенный круг задач отдельного этапа проектирования изделий или помогает принимать решения по отдельным бизнес-процедурам этапов ЖЦИ. Но задача взаимодействия АС разных производителей и их подсистем зачастую не ставилась и не рассматривалась. Языки и форматы представления данных в разных программах не были согласованными, например, данные конструкторского проектирования не отвечали требованиям к входным данным для программ проектирования технологических процессов. Негативные последствия несогласованности лингвистического и информационного обеспечений разных АС наиболее выпукло проявляются при росте сложности систем, в проектировании которых задействовано несколько предприятий. Показательным примером является попытка в 80-е годы создания в США системы стратегической оборонной инициативы. Стало очевидным, что без информационного взаимодействия разных АС и их подсистем эффективность автоматизации оказывается низкой, а создание многих современных сложных технических изделий – неразрешимой проблемой. Таким образом, дальнейший прогресс в области техники и промышленных технологий оказался в зависимости от решения проблем интеграции АС путем создания единого информационного пространства управления, проектирования, производства и эксплуатации изделий. Ответом на возникшие проблемы стало создание методологии компьютерного сопровождения и информационной поддержки промышленных изделий на всех этапах их жизненного цикла. Эта методология получила название CALS. К основным целям CALS относится прежде всего создание принципиальной возможности дальнейшего технического прогресса по пути разработки и производства усложняющихся промышленных изделий. Но CALS позволяет повысить эффективность разработки и изготовления также большинства традиционных изделий, что выражается в повышении качества, в сокращении материальных и временных затрат как на проектирование и производство, так и на эксплуатацию изделий. Первоначально CALS создавалась как совокупность методов и средств решения логистических задач и аббревиатура CALS расшифровывалась как Computer Aided Logistics Systems. В дальнейшем сфера применения CALS расширилась и охватила все стороны информационной поддержки промышленных изделий, включая проектирование, управление предприятиями и технологическими процессами. Соответственно CALS получила новую интерпретацию и стала рассматриваться как Continuous Acquisition and Lifecycle Support. В качестве русскоязычного эквивалента CALS принято сокращение ИПИ – информационная поддержка изделий. Что же такое CALS в современном понимании? Существует и используется несколько толкований. В широком смысле слова CALS = это методология создания единого информационного пространства промышленной продукции, обеспечивающего взаимодействие всех промышленных автоматизированных систем. В этом смысле предметом CALS являются методы и средства как взаимодействия разных АС и их подсистем, так и сами АС с учетом всех видов их обеспечения. Практически синонимом CALS в этом смысле становится термин PLM (Product Lifecycle Management), широко используемый в последнее время ведущими производителями АС. В узком смысле слова CALS – это технология интеграции различных АС со своими лингвистическим, информационным, программным, математическим, методическим, техническим и организационным видами обеспечения. К лингвистическому обеспечению CALS относятся языки и форматы данных о промышленных изделиях и процессах, используемые для представления и обмена информацией между АС и их подсистемами на различных этапах ЖЦИ. Информационное обеспечение составляют базы данных, включающие сведения о промышленных изделиях, используемые разными системами в процессе проектирования, производства, эксплуатации и утилизации продукции. В состав информационного обеспечения входят также серии международных и национальных CALS стандартов и спецификаций. Программное обеспечение CALS представлено программными комплексами, предназначенными для поддержки единого информационного пространства этапов ЖЦИ. Это прежде всего системы управления документами и документооборотом, системы PDM, средства разработки интерактивных электронных технических руководств и некоторые другие. Математическое обеспечение CALS включает методы и алгоритмы создания и использования моделей взаимодействия различных систем в CALS-технологиях. Среди этих методов, в первую очередь, следует назвать методы имитационного моделирования сложных систем, методы планирования процессов и распределения ресурсов. Методическое обеспечение CALS представлено методиками выполнения таких процессов, как параллельное (совмещенное) проектирование и производство, структурирование сложных объектов, их функциональное и информационное моделирование, объектно-ориентированное проектирование, создание онтологий приложений. К техническому обеспечению CALS относят аппаратные средства получения, хранения, обработки, визуализации данных при информационном сопровождении изделий. Взаимодействие разных частей виртуальных предприятий и систем, поддерживающих разные этапы ЖЦИ, происходит через линии передачи данных и сетевое коммутирующее оборудование. При этом широко используются возможности Internet и Web-технологий. Однако используемые технические средства не являются специфическими для CALS. Организационное обеспечение CALS представлено различного рода документами, совокупностью соглашений и инструкций, регламентирующих роли и обязанности участников жизненного цикла промышленных изделий. При реализации целей и задач CALS необходимо соблюдать следующие основные принципы: • информационная поддержка всех этапов ЖЦИ; • единство представления и интерпретации данных в процессах информационного обмена между АС и их подсистемами, что обусловливает разработку онтологий приложений и соответствующих языков представления данных; • доступность информации для всех участников ЖЦИ в любое время и в любом месте, что обусловливает применение современных телекоммуникационных технологий; • унификация и стандартизация средств взаимодействия АС и их подсистем; • поддержка процедур совмещенного (параллельного) проектирования изделий. Программное обеспечение CALS-технологий Программное обеспечение CALS-технологий должно выполнять те функции, которые обеспечивают создание и поддержку интегрирующей информационной среды для промышленных автоматизированных систем. Во-первых, это функции управления данными, разделяемыми разными автоматизированными системами и подсистемами на этапах жизненного цикла изделий. Эти функции в настоящее время выполняют системы управления жизненным циклом PLM или на этапе проектирования — системы управления проектными данными PDM. Во-вторых, это функции управления данными и программами в распределенной сетевой среде, включая функции защиты информации. Эти функции реализуются в технологиях распределенных вычислений таких, как удаленный вызов процедур RPC, архитектура на основе посредников объектных запросов CORBA, объектная модель COM/DCOM, технология SOAP и др. На базе COM/DCOM фирма Microsoft развивает совокупность средств под названием DNA-архитектура (Distributed interNet Application). Эти средства включают целую гамму инструментов, таких как ActiveX, HTML, SQL Server, OLE и др. Применительно к промышленным приложениям эта архитектура получила название DNA for Manufacturing (DNA-M). Использование DNA-M позволяет разработчикам CALS-средств сконцентрировать усилия на решении специфичных задач и не тратить время на реализацию взаимодействия в сетевой среде. Особенно важную роль DNA-M сыграет в интеграции нижних уровней управления производством с системами ERP. В-третьих, это программные средства логистической поддержки изделий, обслуживания сложной техники и обучения обслуживающего персонала правилам эксплуатации и ремонта изделий, представленные, в частности, интерактивными электронными техническими руководствами (ИЭТР), создаваемыми в CALS-системах с помощью специальных инструментальных средств. Развитые ИЭТР служат не только целям обучения пользователей, но выполняют также функции автоматизированного заказа материалов и запасных частей, планирования и учета проведения регламентных работ, обмена данными между потребителем и поставщиком, диагностики оборудования и поиска неисправностей. Примерами инструментальных систем создания ИЭТР могут служить TG Builder (компания "Прикладная логистика") или Adobe frameMaker+SGML (Adobe). В-четвертых, к программному обеспечению CALS-технологий следует отнести многочисленные средства поддержки моделирования и обмена данными с использованием языка Express, которые можно объединить под названием STEP-средств (STEP Tools). К STEP-средствам относятся редакторы, компиляторы, визуализаторы, анализаторы, конверторы и т.п., связанные с языком Express. Редакторы помогают синтезировать и корректировать Express-модели. Анализаторы служат для синтаксического анализа и выявления ошибок, допущенных при написании модели. Анализатор входит в состав компилятора, который после анализа осуществляет трансляцию Express-моделей в ту или иную требуемую языковую форму. Визуализаторы генерируют графические представления моделей на языке Express-G. Конверторы используются для преобразования Express-моделей на основе языка Express-X. В-пятых, к программному обеспечению CALS-технологий можно отнести средства поддержки языков SGML, XML, EDIFACT. Примерами STEP-средств могут служить продукты компаний STEP Tools, EPM Technology AS, TNO и др. Например с помощью программ ST-Developer компании STEP Tools реализуют SDAI-интерфейс на языках C, C++, Java, IDL/Corba, интерфейс Express-моделей к SQL базам данных и графическому ядру ACIS машиностроительных CAD-систем, осуществляют тестирование Express-моделей, генерируют модели на языке Express-G. Ряд STEP-средств предлагает Национальный институт стандартов и технологий США (NIST). Это средства оперирования обменными файлами и Express-моделями, трансляции моделей в C++ и IDL представления. Компания Rational Rose предлагает транслятор Express-моделей в UML-представление. Программные средства компании EPM Technology AS, составляющие систему EDM (Express Data Manager), характеризуются разнообразием выполняемых функций. Так, программа EDMdeveloperSeat поддерживает базу данных с Express-моделями, EDMvisualExpress осуществляет визуализацию моделей с помощью расширения языка Express-G, EDMmodelChecker служит для диагностики допущенных нарушений правил языка Express. Технологии распределенных вычислений и их программное обеспечение используются, но не являются специфичными в CALS-приложениях. Поэтому основными компонентами ПО CALS являются системы PDM (или их развитие в виде систем CPC и PLM) и интерактивные электронные технические руководства (IETM). Системы PDM предназначены преимущественно для информационного обеспечения проектирования — упорядочения информации о проекте, управления соответствующими документами, включая спецификации и другие виды представления данных, обеспечения доступа к данным по различным атрибутам, навигации по иерархической структуре проекта. В ряде систем PDM поддерживаются информационные связи не только внутри САПР, но также с производственной и маркетинговой документацией. Аналогичные системы, в большей мере ориентированные на управление информацией в системах типа ERP, SCM, CRM и т.п., часто называют системами EDM (Enterprise Data Management). В последнее время усилия многих компаний, производящих программно-аппаратные средства автоматизированных систем, направлены на создание систем электронного бизнеса (E-commerce). В основе развитых систем E-commerce лежит управление данными на протяжении всего жизненного цикла изделий, т.е. CALS-технологии, средства PDM и CPC. Среди систем E-commerce различают системы B2C и B2B. Система B2C (Business-to-Customer) предназначена для автоматизации процедур взаимоотношений предприятия с конечными потребителями его продукции, чаще всего это взаимоотношения юридического лица с физическими лицами (покупателями товаров). Но значимость систем E-commerce отнюдь не определяется организацией электронной торговли путем размещения на сайтах Internet витрин товаров и услуг. Цель электронного бизнеса заключается в объединении в едином информационном пространстве информации, во-первых, о возможностях множества организаций, специализирующихся на предоставлении различных услуг и на выполнении тех или иных процедур и операций по проектированию и изготовлению заказанных изделий, во-вторых, о запросах на использование этих услуг и заказах на поставки изделий и полуфабрикатов. В отличие от B2C такие E-commerce системы называют системами B2B (Business-to-Business). Эти системы автоматизируют процедуры взаимодействия юридических лиц друг с другом, более конкретно, системы B2B автоматизируют процессы обмена информацией между компаниями-партнерами. Возникает задача создания единого информационного пространства, в котором функционируют автоматизированные системы управления взаимодействующих предприятий. Системы управления данными в интегрированном информационном пространстве называют системами CPC. Технология интегрированного информационного пространства и управления данными CPC — технология взаимодействия производителей, поставщиков и покупателей на различных этапах жизненного цикла изделий, направленная на оптимальное удовлетворение потребностей заказчиков в продукции и услугах. Благодаря более высокой степени специализации предприятий, проектированию под заказ, комплексному учету затрат на проектирование, изготовление, доставку продуктов можно минимизировать временные и финансовые затраты при высоком качестве изделий. Чтобы использовать эти возможности, требуются специальные системы CPC, главное назначение которых — обеспечивать информационную согласованность действий всех участников процесса создания продукции. В CPC учитывается, что число участников в цепи поставок может быть весьма значительным, причем состав участников непостоянен, а определяется исходя из конкретных задач и условий. Для эффективного управления процессами на протяжении всего жизненного цикла продукции все участники должны пользоваться доступными для правильного восприятия, интерпретации и исчерпывающе полными данными. Системы CPC интегрируют функции таких систем, как SCM, CRM, а также часть функций систем PDM, CAD/CAM и ERP. В большинстве автоматизированных систем для обменов данными внутри системы используют те или иные форматы, или не являющиеся унифицированными, или признанные в ряде систем лишь как стандарты де-факто. Языки типа Express используют для межсистемных обменов и представления многократно используемых данных в общих базах данных, для выполнения роли внутренних форматов они неудобны. Поэтому в прикладные автоматизированные системы для связей с общей информационной CALS-средой должны быть включены конверторы для взаимных преобразований внутренних форматов данных в STEP-форматы. Такие конверторы также относят к программному обеспечению CALS-технологий. В PDM разнообразие типов проектных данных поддерживается их классификацией и соответствующим выделением групп с характерными множествами атрибутов. Такими группами данных являются аспекты описания, т.е. описания изделий с различных точек зрения. Для большинства САПР машиностроения характерными аспектами являются свойства компонентов и сборок (эти сведения называют Bill of materials — BOM), модели и их документальное выражение (основными примерами могут служить чертежи, 3D модели визуализации, сеточные представления для конечно-элементного анализа, текстовые описания), структура изделий, отражающая взаимосвязи между компонентами и сборками и их описаниями в разных группах. Вследствие большого объема проектных данных и наличия ряда версий проектов PDM должна обладать развитой системой поиска нужных данных по различным критериям. |