Главная страница
Навигация по странице:

  • История развития информатики

  • Появление ЭВМ Счётно- решающее устройство

  • Паскалина Б. Паскаля 1642

  • История возникновения блоков ЭВМ

  • Советские ЭВМ первого поколения

  • Советские ЭВМ второго поколения

  • Советские ЭВМ третьего поколения

  • Языки программирования Ассемблер

  • Реферат. Реферат по физике — копия. Реферат По дисциплине Физика На тему Появление эвм. Счетно решающие устройство. Блок управления. Появление процессора. Первые типы программных устройств. Ассемблеры, Информатика. Микроэлектроника. Появление компьютера.


    Скачать 1.11 Mb.
    НазваниеРеферат По дисциплине Физика На тему Появление эвм. Счетно решающие устройство. Блок управления. Появление процессора. Первые типы программных устройств. Ассемблеры, Информатика. Микроэлектроника. Появление компьютера.
    АнкорРеферат
    Дата25.04.2022
    Размер1.11 Mb.
    Формат файлаdocx
    Имя файлаРеферат по физике — копия.docx
    ТипРеферат
    #496562



    КОЛЛЕДЖ КОСМИЧЕСКОГО МАШИНОСТРОЕНИЯ И ТЕХНОЛОГИЙ

    Реферат
    По дисциплине: «Физика»
    На тему: «Появление ЭВМ. Счетно- решающие устройство. Блок управления. Появление процессора. Первые типы программных устройств. Ассемблеры, Информатика. Микроэлектроника. Появление компьютера.»


    Выполнила студентка 2 курса

    Группы БТС1-20

    Петрова И.Н.

    Преподаватель:

    Черников В.В.

    Королёв,

    2022

    Оглавление




    Введение 2

    1.Появление ЭВМ 3

    1.1.Счётно- решающее устройство 3

    1.2.Паскалина Б. Паскаля 1642 4

    2.История возникновения блоков ЭВМ 4

    2.1.1.Советские ЭВМ первого поколения 5

    2.1.2.Советские ЭВМ второго поколения 7

    2.1.3.Советские ЭВМ третьего поколения 8

    2.1.4.Мониторы 9

    2.1.5.Микросхемы 11

    2.1.6.Реестры 11

    2.1.7.Команды, система команд 12

    3.Языки программирования 13

    3.1.Ассемблер 13

    3.2.Языки высокого уровня 13

    4.Микроэлектроника 14

    Заключение 16

    Литература 17

    Введение

    В своём реферате я хочу рассмотреть, как развивалась электронно-вычислительная техника и информационные технологии. Для начала рассмотрим, как начали появляться электронно-вычислительные машины и как это помогло людям находить новые решения для реализации своих идей. Также рассмотрим, что еще развивалось вместе с электронно-вычислительной техникой, какие электронные устройства появлялись вместе с ней. Вместе с этим мы рассмотрим языки программирования как они развивались и каким образом они пришли к языкам высокого уровня. Также я рассматриваю вопрос микроэлектроники, как мне кажется, в будущем может помочь людям в решении многих вопросов в разных сферах жизни.


    1. История развития информатики

    После окончания войны 1945 г. начала формироваться кибернетика. В конце 40-х годов Н. Виннер опубликовал книги “Кибернетика или управление и связь в животном и машине”, которые стали пользоваться популярностью. Постепенно кибернетика становилась общей наукой, связанная с обработкой и преобразованием информационных процессов.В нашей стране развитие становления такой науки, как кибернетики проходила не беспрепятственно из-за идеологий того периода. Тоталитарная идеология того времени боролась против инакомыслящих. Идеология не признавала даже некоторые науки, такие как генетика и кибернетика, они считались "лженауками" .А.И. Берг, говорил, что в стране было заблуждение в оценке значения и возможностей кибернетики. Это вызвало большие потери в развитии этой науки, а также задержал процесс разработки ЭВМ. Так же вызывало трудности то, что прогресс науки "кибернетика" в этот период сталкивалась с большими препятствиями в осуществлении обширных гос. проектов. Один из этих проектов было создание автоматизированных систем управления (АСУ).Рассмотрим происхождение терминов. После появления "кибернетики", стал использоваться англоязычный термин "Computer Science", а затем во второй половине 20 века во Франции был введён термин "информатика". Раньше, в нашей стране этот термин употреблялся как узконаправленная область изучения общих свойств научной информации. Академик А.П. Ершов говорил, что в современном мире термин информатика “имеет более обширное значение, чем просто как фундаментальная наука, которая изучает процессы передачи и обработки информации.В конце 70-х годов 20 века МКпИ (Международный конгресс по информатике) дал определение термина информатики в современном мире. «Информатика – это наука, охватывающая все аспекты, взаимосвязанные с разработкой, формированием, использованием и техническо-материальным обслуживанием систем обработки информации, а также совокупность производственного, потребительского, административного и соц. воздействия”.


    1. Появление ЭВМ

      1. Счётно- решающее устройство

    И стория вычислений уходит глубокими корнями вглубь веков так же, как и развитие человечества. Накопление запасов, делёж добычи, обмен — все подобные действия связаны со счётом. Потребность в поиске решений всё более и более сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые могли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объёмов и расстояний. Для перевода из одной системы измерения в другую требовались вычисления, которые чаще всего могли производить специально обученные люди, которых иногда приглашали из других стран. Это естественно привело к созданию изобретений, помогающих счёту. Одним из первых устройств (VI—V вв. до н. э.), облегчающих вычисления, можно считать специальную доску для вычислений, названную «абак». Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы, камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Древней Руси при счёте применялось устройство, похожее на абак, называемое «русский шёт». В XVII веке этот прибор уже обрёл вид привычных русских счёт.В начале XVII столетия, когда математика стала играть ключевую роль в науке, всё острее ощущалась необходимость в изобретении счётной машины. И в середине века молодой французский математик и физик Блез Паскаль создал «суммирующую» машину.

      1. Паскалина Б. Паскаля 1642

    П ервую машину, которая могла считать сама, создал французский ученый Блез Паскаль (1623–1662). Он задумал ее еще в детстве. Его отец работал сборщиком налогов и все вечера занимался подсчетами. Сын видел, как отец уставал от этого занятия, и мечтал подарить отцу машину, которая бы облегчила его труд. В 1642 г. Б. Паскаль сконструировал первый механический вычислитель, позволяющий складывать и вычитать числа. Для выполнения арифметических операций он заменил поступательное перемещение костяшек в абаковидных инструментах на вращательное движение оси (колеса). Таким образом, в его машине сложению чисел соответствовало сложение пропорциональных им углов. Основной недостаток «Паскалины» заключался в неудобстве выполнения на ней всех операций, кроме простого сложения.Эта машина вошла в историю вычислительной техники под названием «Паскалина». За время работы над устройством Паскаль сделал более 50 различных моделей своей машины, в которых он экспериментировал не только с материалами, но и с формой деталей машины. До наших дней сохранилось восемь его машин. Первая работающая машина была изготовлена в 1642 г., но окончательный вариант ее появился только в 1654 г.


    1. История возникновения блоков ЭВМ

    В современной разговорной – да и научной тоже – речи выражение «электронная вычислительная машина» повсеместно изменено на слово «компьютер». Это не совсем верно теоретически – компьютерные вычисления могут быть основаны не на использовании электронных приспособлений. Однако исторически сложилось, что ЭВМ стали основным инструментом для проведения операций с большими объёмами численных данных. А поскольку над их совершенствованием работали исключительно математики, все типы информации стали кодироваться численными «шифрами», и удобные для их обработки ЭВМ из научно-военной экзотики превратились в универсальную широко распространённую технику. После завершения войны разработки нацистов попали в руки Советского Союза и, в основном, США. Сложившееся в то время научное сообщество отличалось сильной зависимостью от «своих» государств, но что важнее – высоким уровнем проницательности и трудолюбия. Ведущие специалисты сразу нескольких областей заинтересовались возможностями электронно-вычислительной техники. А правительства согласились, что устройства для быстрых, точных и сложных вычислений – это перспективно, и выделили средства на соответствующие исследования. В США до и во время войны велись свои кибернетические разработки – непрограммируемый, но полностью электронный (без механической компоненты) компьютер Атанасова-Берри (ABC), а также электромеханический, но программируемый под разные задачи ЭНИАК. Их модернизация с учётом трудов европейских (немецких и британских) учёных привела к появлению первых «настоящих» ЭВМ. В это же время (в 1947-м году) в Киеве был организован Институт электротехники АН УССР, во главе которого встал Сергей Лебедев, инженер-электротехник и родоначальник советской информатики. В один год с появлением института Лебедев открывает под его крышей лабораторию моделирования и вычислительной техники, в которой в последующие несколько десятилетий разрабатываются лучшие ЭВМ Союза.


        1. Советские ЭВМ первого поколения

    В 1948-м году Сергей Лебедев, занимавшийся на своём директорском посту не только административной работой, но и научной, подал в АН СССР докладную записку. В ней говорилось о необходимости в кратчайшие сроки разработать свою электронную вычислительную машину, и ради практического использования, и ради научного прогресса. Разработки этой машины велись полностью с нуля – об экспериментах западных коллег Лебедев и его сотрудники информации не имели. За два года машина была спроектирована и смонтирована – для этих целей под Киевом, в Феофании, институту отвели здание, ранее принадлежавшее монастырю. В 1950-м ЭВМ, названная Малой электронной счётной машиной (МЭСМ), произвела первые вычисления – нахождение корней дифференциального уравнения. В 1951-м году инспекция академии наук, возглавляемая Келдышем, приняла МЭСМ в эксплуатацию. МЭСМ состояла из 6000 вакуумных ламп, выполняла 3000 операций в секунду, потребляла чуть меньше 25 кВт энергии и занимала 60 квадратных метров. Имела сложную трёхадресную систему команд и считывала данные не только с перфокарт, но и с магнитных лент. Пока Лебедев строил свою машину в Киеве, в Москве образовалась своя группа электротехников. Электротехник Исаак Брук и изобретатель Башир Рамеев, оба – сотрудники Энергетического института им. Кржижановского, ещё в 1948-м подали в патентное бюро заявку на регистрацию проекта собственной ЭВМ. К 1950-му году Рамеева поставили во главе особой лаборатории, где буквально за год была собрана М-1– ЭВМ значительно менее мощная, чем МЭСМ (выполнялось всего 20 операций в секунду), но зато и меньшая по размерам (около 5 метров квадратных). 7 30 ламп потребляли 8 кВт энергии. В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп – всего лишь вдвое. Этого удалось достичь активным использованием управляющих полупроводниковых диодов. Энергопотребление увеличилось до 29 кВт, площадь – до 22 квадратных метров. Несмотря на явную успешность проекта, в массовое производство ЭВМ не запустили – этот приз ушёл ещё одному кибернетическому творению, созданному при поддержке Рамеева – «Стреле». ЭВМ «Стрела» создавалась в Москве, под руководством Юрия Базилевского. Первый образец устройства завершили к 1953-му году. Как и М-1, «Стрела» использовала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). «Стрела» оказалась наиболее удачным из этих трёх проектов, поскольку её сумели запустить в серию – за сборку взялся Московский завод счётно-аналитических машин. За три года (1953-1956) было выпущено семь «Стрел», к оторые затем отправились в МГУ, в вычислительные центры АН СССР и нескольких министерств. Во многих смыслах «Стрела» была хуже, чем М-2. Она выполняла те же 2000 операций в секунду, но при этом использовалось 6200 ламп и больше 60 тысяч диодов, что в сумме давало 300 квадратных метров занимаемой площади и порядка 150 кВт энергопотребления. М-2 подвели сроки: её предшественница хорошей производительностью не отличалась, а к моменту ввода в эксплуатацию доведенной до ума версии «Стрелы» уже были отданы в производство.



        1. Советские ЭВМ второго поколения

    П ереход на транзисторные вычисления в советской кибернетике прошёл плавно – не было создано никаких новых КБ или серий, просто старые БЭСМы и «Уралы» перевели на новую технологию. Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров – вычислительного и контроллера периферийных устройств – имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500000 операций в секунду для основного процессора и 37000 – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с ЭВМ работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 квадратных метров. Её проектирование началось в 1961-м, а завершилось в 1964-м году. Уже после 5Э92б разработчики занялись универсальной транзисторной ЭВМ – БЭСМами. БЭСМ-3 осталась макетом, БЭСМ-4 дошла до серийного производства и была выпущена в количестве 30 машин. Она выполняла до 40 операций в секунду и являлась «подопытным образцом» для создания новых языков программирования, пригодившихся с появлением БЭСМ-6. За всю историю советской вычислительной техники БЭСМ-6 считается самой триумфальной. На момент своего создания в 1965-м году эта ЭВМ была передовой не столько по аппаратным характеристикам, сколько по управляемости. Она имела развитую систему самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами (по телефонным и телеграфным каналам), возможность конвейерной обработки 14 процессорных команд. Производительность системы достигала миллиона операций в секунду. Имелась поддержка виртуальной памяти, кеша команд, чтения и записи данных. В 1975-м году БЭСМ-6 обрабатывала траектории полёта космических аппаратов, участвовавших в проекте «Союз-Аполлон». Выпуск ЭВМ продолжался до 1987-го года, а эксплуатация – до 1995-го. С 1964-го года на полупроводники перешли и «Уралы». Но к тому времени монополия этих ЭВМ уже прошла – почти в каждом регионе производили свои компьютеры. Среди них были украинские управляющие ЭВМ «Днепр», выполняющие до 20000 операций в секунду и потребляющие всего 4 кВт, ленинградские УМ-1, тоже управляющие, и требующие всего 0,2 кВт электричества при производительности 5000 операций в секунду, белорусские «Мински», «Весна» и «Снег», ереванские «Наири» и многие другие. Особого внимания заслуживают разработанные в киевском Институте кибернетики ЭВМ «МИР» и «МИР-2». Эти инженерные ЭВМ стали выпускаться серийно в 1965-м году. В известном смысле глава Института кибернетики, академик Глушков, опередил Стива Джобса и Стива Возняка с их пользовательскими интерфейсами. «МИР» представлял собой ЭВМ с подключенной к ней электрической печатной машинкой; задавать команды процессору можно было на человекочитаемом языке программирования АЛМИР-65 (для «МИР-2» использовался язык высокого уровня АНАЛИТИК ). Команды задавались как латинскими, так и кириллическими символами, поддерживались режимы редактирования и отладки. Вывод информации предусматривался в текстовом, табличном и графическом видах. Производительность «МИРа» составляла 2000 операций в секунду, для «МИР-2» этот показатель достигал 12000 операций в секунду, потребление энергии составляло несколько киловатт.


        1. Советские ЭВМ третьего поколения

    Появление вакуумных ламп ускорило выполнение операций и позволило воплотить в жизнь идеи фон Неймана. Создание транзисторов решило «габаритную проблему» и позволило снизить энергопотребление. Однако оставалась проблема качества сборки – отдельные транзисторы буквально припаивались друг к другу, а это было плохо и с точки зрения механической надёжности, и с точки зрения электроизоляции. В начале 50-х годов инженерами высказывались идеи интеграции отдельных электронных компонентов, но только к 60-м появились первые опытные образцы интегральных микросхем. Вычислительные кристаллы стали не собирать, а выращивать на специальных подложках. Электронные компоненты, выполняющие различные задачи, стали соединять при помощи металлизации алюминием, а роль изолятора была отведена p-n-переходу в самих транзисторах.


        1. Мониторы

    Д о 50-х годов компьютеры выводили информацию только на печатающие устройства. Достаточно часто компьютеры тех лет оснащались осциллографами, которые, однако, использовались не для вывода информации, а всего лишь для проверки электронных цепей вычислительной машины.Впервые в 1950 году в Кембриджском университете (Англия) электронно-лучевая трубка осциллографа была использована для вывода графической информации на компьютере EDSAC (Electronic Delay Storage Automatic Computer).Примерно полтора года спустя английский ученый Кристофер Стретчи написал для компьютера "Марк 1" программу, игравшую в шашки и выводившую информацию на экран. Однако это были лишь отдельные примеры, не носившие серьезного системного характера.Реальный прорыв в представлении графической информации на экране дисплея произошел в Америке в рамках военного проекта на базе компьютерной системы "Вихрь" (whirlwind), который был разработан американскими инженерами в 1951 году. Этот военный компьютер использовался для фиксации информации о вторжении самолетов в воздушное пространство США. Вражеские самолеты представлялись на экране в виде графических символов. Первая демонстрация "Вихря" состоялась 20 апреля 1951 года - радиолокатор посылал информацию о положении самолета компьютеру, и тот передавал на экран положение самолета-цели, которая отображалась в виде движущейся точки и буквы T (Target). Это был первый крупный проект, в котором электронно-лучевая трубка использовалась для отображения графической информации.Первые мониторы были векторными - в мониторах этого типа электронный пучок создавал линии на экране, перемещаясь непосредственно от одного набора координат к другому. Соответственно не было необходимости разбивать в подобных мониторах экран на пикселы. Позднее появились мониторы с растровым сканированием. В мониторах подобного типа электронный пучок сканирует экран слева направо и сверху вниз, пробегая каждый раз всю поверхность экрана.Следующей ступенькой развития мониторов явилось цветное изображение, для получения которого требовался уже не один, а три пучка, каждый из которых высвечивал определенные точки на поверхности дисплея. Подробнее этот тип мониторов будет рассмотрен при изучении принципа работы современных цветных CRT-мониторов. Со временем помимо CRT-мониторов появились и другие технологии, которые позволили создавать б олее компактные и легкие экранные панели.В 1981-ом году IBM представила первый персональный компьютер, который состоял из трёх частей: клавиатуры, системного блока и монитора. В этом же году компания IBM выпустила монохромные дисплеи, поддерживающие видеоадаптер MDA (Monochrome Display Adapter), что принесло компьютерам резкость изображения. Чуть позже появились мониторы, которые поддерживали новый стандарт CGA (Color Graphics Adapter) для цветной графики. Они передавали четыре цвета и давали разрешение 320 x 200 пикселей. Далее IBM уже к 1984-му году представила улучшенный стандарт EGA (Enhanced Graphics Adapter). Теперь мониторы отображали 16 цветов и имели разрешение экрана 640 x 350 пикселей. В 1987-ом году IBM представила следующий стандарт для видеоадаптеров и мониторов – VGA (Video Graphics Array). Этот стандарт для передачи цветовой информации предполагал использование аналогового сигнала, который разрешал использовать VGA-мониторы совместно с последующими адаптерами новых поколений, способных осуществлять вывод большего количества цветов. На 1987-ой год мониторы при разрешении 640x480 пикселей были способны отображать уже 254 цвета. В 90-х годах вместе с прогрессом в создании комплектующих для компьютеров развивались и компьютерные мониторы, которые достигли цветопередачи в 16,8 миллионов цветов при разрешении 1600 x 1200 пикселей. Однако распространённые в то время мониторы на основе электронных лучевых трубок (ЭЛТ-мониторы) обладали целым рядом серьёзных недостатков, основными из которых были их громоздкость и высокая величина электромагнитного излучения. Тем не менее можно смело утверждать, что до начала 21-го века была эра ЭЛТ-мониторов. Однако вскоре разрабатывавшиеся ещё с шестидесятых годов дисплеи на основе жидких кристаллов громко заявили о себе. Поначалу это были очень несовершенные конструкции, которые не могли похвастаться ни размерами экрана, ни цветопередачей, ни контрастностью. В восьмидесятых они лишь нашли применение в качестве дисплеев калькуляторов и электронных часов. Однако вскоре с развитием новых материалов и технологий они сперва достигли по всем параметрам ЭЛТ – мониторы, а скоро по некоторым параметрам и превзошли их.


        1. Микросхемы

    Интегральные микросхемы стали плодом интеграции же трудов как минимум четырёх инженеров – Килби, Леговеца, Нойса и Эрни. Поначалу микросхемы проектировались по тем же принципам, по которым осуществлялась «маршрутизация» сигналов внутри ламповых ЭВМ. Затем инженеры стали применять так называемую транзисторно-транзисторную логику (ТТЛ), более полно использовавшую физические преимущества новых решений. Немаловажным было обеспечение совместимости, аппаратной и программной, различных ЭВМ. Особенно много внимания уделялось совместимости моделей одних и тех же серий – до межкорпоративного и тем более межгосударственного сотрудничества ещё было далеко.


        1. Реестры

    Сам реестр как древовидная иерархическая база данных впервые появился в Windows 3.1 (апрель 1992). Это был всего один двоичный файл, который назывался REG.DAT. Реестр Windows 3.1 имел только одну ветку HKEY_CLASSES_ROOT. Он служил для связи DDE, а позднее и OLE-объектов. Одновременно c появлением реестра в Windows 3.1 появилась программа REGEDIT.EXE для просмотра и редактирования реестра. Первый реестр уже имел возможность импорта данных из *.REG-файлов. В базовой поставке шёл файл SETUP.REG, содержащий данные по основным расширениям и типам файлов. Реестр Windows 3.1 имел ограничение на максимальный размер файла REG.DAT — 64 Кбайт. Если реестр превышал этот размер, файл реестра (REG.DAT) приходилось удалять и собирать заново либо из *.REG-файлов либо вводить данные вручную.


        1. Команды, система команд

    Всякая компьютерная программа является последовательностью отдельных команд. Командой называется описание операции, которую выполняет компьютер. Обычно у команды существует свой код (условное обозначение), исходные данные (операнды) и результат. Совокупность команд, которые выполняет данный компьютер, представляет собой систему команд данного компьютера. В истории развития вычислительной техники как в зеркале отражаются изменения, происходившие во взглядах разработчиков на перспективность той или иной архитектуры системы команд. Среди мотивов, чаще всего предопределяющих переход к новому типу АСК, остановимся на двух наиболее существенных. Первый — это состав операций, выполняемых вычислительной машиной, и их сложность. Второй — место хранения операндов, что влияет на количество и длину адресов, указываемых в адресной части команд обработки данных. Современная технология программирования ориентирована на языки высокого уровня (ЯВУ), главная цель которых — облегчить процесс программирования. Переход к ЯВУ, однако, породил серьезную проблему: сложные операторы, характерные для ЯВУ, существенно отличаются от простых машинных операций, реализуемых в большинстве вычислительных машин. Проблема получила название семантического разрыва, а ее следствием становится недостаточно эффективное выполнение программ на ЭВМ. Пытаясь преодолеть семантический разрыв, разработчики вычислительных машин в настоящее время выбирают один из трех подходов и, соответственно, один из трех типов АСК:

    1. архитектуру с полным набором команд: CISC (Complex Instruction Set Com puter);

    2. архитектуру с сокращенным набором команд: RISC (Reduced Instruction Set Computer);

    3. архитектуру с командными словами сверхбольшой длины: VLIW (Very Long Instruction Word).

    К типу CISC можно отнести практически все ЭВМ, выпускавшиеся до середины 1980-х годов, и значительную часть производящихся в настоящее время. Рассмотренный способ решения проблемы семантического разрыва вместе с тем ведет к усложнению аппаратуры ЭВМ, главным образом устройства управления, что, в свою очередь, негативно сказывается на производительности ЭВМ в целом.


    1. Языки программирования

      1. Ассемблер

    Assembler — язык программирования низкого уровня, представляющий собой формат записи машинных команд, удобный для восприятия человеком. Команды языка ассемблера один в один соответствуют командам процессора и, фактически, представляют собой удобную символьную форму записи (мнемокод) команд и их аргументов. Также язык ассемблера обеспечивает базовые программные абстракции: связывание частей программы и данных через метки с символьными именами и директивы. Директивы ассемблера позволяют включать в программу блоки данных (описанные явно или считанные из файла); повторить определённый фрагмент указанное число раз; компилировать фрагмент по условию; задавать адрес исполнения фрагмента, менять значения меток в процессе компиляции; использовать макроопределения с параметрами и др. Каждая модель процессора, в принципе, имеет свой набор команд и соответствующий ему язык (или диалект) ассемблера.


      1. Языки высокого уровня

    Первый язык высокого уровня появился в 1957 году в Америке. Он назывался Фортран (FORmula TRANslator) и позволял писать программы, не думая об архитектуре конкретного компьютера. Код стал «переносимым» — одна и та же программа теперь запускалась на разных устройствах. Это стало возможным благодаря специальным программам — компиляторам. Они превращали текст на Фортране в машинный код и сами устанавливали соответствия между ним и системой команд компьютера. Переносимость кода объединила усилия программистов по всему миру и позволила продавать программы. Теперь, чтобы решить квадратное уравнение или посчитать косинус, можно было использовать уже написанный другими программистами код, а не писать программу с нуля. Так появились «библиотеки» — сборники программ, решающих определенный класс задач. Программисты писали библиотеки и продавали компаниям, которые использовали их для сложных вычислений — например, расчета траектории полета ракеты. Сегодня на этом языке так много математических библиотек, что среди ученых даже ходит присказка: «у любой математической задачи уже есть решение на Фортране». Он был настолько успешен, что в Европе создали ALGOL (ALGOrythmic Language) — свой язык программирования высокого уровня, чтобы избежать монополии.


    1. Микроэлектроника

    С оветская микроэлектронная промышленность оставалась передовой до конца семидесятых годов прошлого века. Погубила ее межведомственная разобщенность и недостаток финансирования для перехода на новый уровень развития. В начале шестидесятых годов ХХ века Советский Союз по многим направлениям научно-технической политики занимал ведущее место в мире. В ряду его успехов были первые в мире спутник, запуск человека в космос, атомный ледокол, компьютер мощностью выше одного миллиона операций в секунду, ПРО и многое что другое. Все эти достижения были бы невозможны без соответствующего развития электроники. По крайней мере, серийное производство транзисторов Советский Союз и США начали практически одновременно, в 1949 году. Однако как отдельная отрасль промышленности советская электроника не сложилась. Потому что за исключением полупроводников, для производства которых были созданы специализированные предприятия, хотя их и было раз, два и обчелся, остальные необходимые компоненты радиоэлек тронной аппаратуры все аппаратурщики делали в основном сами: и резисторы, и конденсаторы, и трансформаторы, и разъемы. Это было побочное полукустарное производство. С определенного момента такая ситуация стала осознаваться как проблема, и в 1961 году был создан Государственный комитет по электронной технике, который возглавил Александр Шокин. Позже Госкомитет был преобразован в Министерство электронной промышленности, которое объединило все до этого разрозненные предп риятия — производители электронной компонентной базы. Создание Госкомитета пришлось на переломный момент в истории мировой электроники. В 1959 году в США была разработана первая в мире микросхема, а в 1962-м начат серийный выпуск. Советский Союз принял вызов, и в том же 1962 году появилось решение ЦК КПСС об организации в Зеленограде под Москвой Научного центра микроэлектроники. Беседу с Борисом Малашевичем, главным специалистом ОАО «Ангстрем», автором многочисленных публикаций по истории советской микроэлектроники, мы начали с вопроса: в 1962 году американцы уже начали выпуск микросхем, а Советский Союз? — С разработкой микросхемы мы задержались, но серийное производство США и Советский Союз начали почти одновременно, в 1962 году. Немного истории. Как известно, первую микросхему Джек Килби из Texas Instruments сделал в 1959-м, но она никуда не пошла. Он еще раз на практике доказал и, что особенно важно, придал широкой гласности возможность изготовления на германии и кремнии не только транзисторов и диодов, что было общеизвестно, но и резисторов и конденсаторов, о чем производители электронных приборов и не задумывались. Непосредственной практической ценности проект не имел и в серийном производстве реализован не был. У Килби была так называемая волосатая — это жаргонное выражение — технология. То есть для соединений даже внутри самой микросхемы он использовал проводочки. И по сути, это и все, что он сделал. И получил Нобелевскую премию. Информация о достижениях Килби спровоцировала Роберта Нойса, президента фирмы Fairchild, на активные действия: 27 сентября 1960 года он изготовил планарный вариант триггера. Но Нойс не успел получить Нобелевскую премию, потому что посмертно ее не присваивают. Хотя он ее больше заслуживал, ведь кроме микросхемы он придумал планарную технологию изготовления полупроводников, которая позволила избавиться от «волосатости» и по которой до сих пор весь мир и живет. Именно по этой технологии начали серийное производство интегральных схем обе фирмы в 1962 году.

    В настоящее время исследовательской работой в области российской микроэлектроники занимается ряд научно-технических коллективов и учреждений Российской Академии наук, например Институт физики полупроводниковФизико-технологический институтФизико-технический институт имени А. Ф. ИоффеИнститут физики микроструктурИнститут радиотехники и электроники.
    Заключение

    На мой взгляд развитие электронно-вычислительной техники помогает решать людям всё более сложные задачи и облегчает жизнь во многих сферах жизнедеятельности. К примеру: раньше людям приходилось всё делать самим, вести учёты, расчёты, хранить данные в огромных объёмах, и при этом знать где что находиться. Чтобы связаться и отправить данные другим предприятия или командам, приходилось самим выезжать и предавать их. Но с приходом электронно-вычислительной техники людям стало намного легче работать. Теперь не надо выезжать чтобы передать данные, их можно просто отправить архивом. Данные теперь можно хранить в больших объемах, и чтобы найти нужные не потребуется много времени чтобы это сделать.Развитие не стоит на месте и развивается равномерно, всё друг с другом связано и закономерно. Поэтому на мой взгляд развитие ЭВМ очень облегчило нашу жизнь не только в вычислительной технике, но и во многих других сферах жизни.
    Литература

    История вычислительной техники / И. А. Казакова. –Издательство ПГУ 2011.

    https://ru.wikibooks.org/wiki/История_развития_ЭВМ

    https://mel.fm/zhizn/istorii/4157692-ot-assemblera-do-java

    https://scienceforum.ru/2017/article/2017032944

    http://bourabai.ru/toe/ic0.htm\

    https://intellect.icu/ponyatie-komandy-sistemy-komand-programmnogo-obespecheniya-i-sistemnoe-programmnoe-obespechenie-evm-kompyutera-646

    https://tehnikaland.ru/krupnaya-byitovaya-tehnika/istoriya-kompyutera.html

    https://statehistory.ru/3932/Istoriya-razvitiya-sovetskikh-EVM-do-1980-go-goda/



    написать администратору сайта