Ракетные двигатели-Реферат. реферат ракетные двигатели. Реферат по дисциплине История авиационной и ракетнокосмической науки и техники
Скачать 0.83 Mb.
|
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра: «Aэрокосмическая» Реферат по дисциплине «История авиационной и ракетно-космической науки и техники» «Развитие ракетного двигателя» Выполнил: Студент гр. M60-117Mки-19 Михаель Винсент Киспе М. Проверил: Преподователь С. Г. Олеговна Москва, 2019 г. ОглавлениеИстоки 4 Ракетные двигатели в России 8 8 В 1912 году в Москве был открыт завод по производству авиационных двигателей. Предприятие входило во французское общество «Гном». Здесь создавались, в том числе, и моторы для самолетов Российской Империи в годы Первой мировой. Завод успешно пережил Революцию, получил новое название «Икар» и продолжил работу уже при советской власти. 8 Электрический ракетный двигатель(ЭРД) 8 Первый электрический реактивный двигатель 8 Химический ракетный двигатель(ХРД) 10 Первые в СССР жидкостные ракетные двигатели 10 Двигатели для баллистических и космических ракет 11 Классификация ХРД 12 По агрегатному состоянию топлива 12 По количеству компонентов 13 Ядерный ракетный двигатель 14 Список использованных источников и основной литературы 17 Истоки
К настоящему времени существует много разновидностей ракетных двигателей. Химические, ядерные, электрические, даже плазменные. Впрочем, ракеты появились задолго до того, как человек изобрел первый двигатель. Слова «ядерный синтез» или «химическая реакция» едва ли говорили что-то жителям Древнего Китая. А ведь ракеты появились именно там. Точную дату назвать сложно, но, предположительно, произошло это в годы правления династии Хань (III-II вв. до н. э.). К тем временам относятся и первые упоминания о порохе. Ракета, которая поднималась вверх благодаря силе, возникшей при взрыве пороха, использовалась в те времена исключительно в мирных целях — для фейерверков. Ракеты эти, что характерно, имели собственный запас горючего, в данном случае, пороха. Следующий шаг был сделан только в 1556 году немецким изобретателем Конрадом Хаасом, который был специалистом по огнестрельному оружию в армии Фердинанда I — Императора Священной Римской Империи. Хаас считается создателем первой боевой ракеты. Хотя, строго говоря, изобретатель не создал ее, а лишь заложил теоретические основы. Именно Хаасу принадлежала идея многоступенчатой ракеты. Ученый подробным образом описал механизм создания летательного аппарата из двух ракет, которые разделялись бы в полете. «Такой аппарат, — уверял он, — мог бы развивать огромную скорость». Идеи Хааса вскоре развил польский генерал Казимир Семенович. В 1650 году он предложил проект создания трехступенчатой ракеты. В жизнь, впрочем, эта идея воплощена так и не была. То есть, конечно, была, но только в ХХ веке, через несколько столетий после смерти Семеновича. Ракеты в армии Военные, разумеется, никогда не упустят возможность принять на вооружение новый вид разрушительного оружия. В XIX веке у них появилась возможность применить в бою ракету. В 1805 году британский офицер Уильям Конгрив продемонстрировал в Королевском Арсенале созданные им пороховые ракеты небывалой по тем временам мощности. Существует предположение, что большинство идей Конгрив «украл» у ирландского националиста Роберта Эммета, применившего некое подобие ракеты во время восстания 1803 года. Спорить на эту тему можно вечно, но тем не менее ракета, которую взяли на вооружение британские войска, называется ракетой Конгрива, а не ракетой Эммета. На ракете — в космос Идеи Засядко легли в основу многих работ Константина Циолковского. Этот знаменитый ученый и изобретатель теоретически обосновал возможность полета в космос при помощи ракетных технологий. Правда, в качестве топлива он предлагал использовать не порох, а смесь жидкого кислорода с жидким водородом. Аналогичные идеи высказывал младший современник Циолковского Герман Оберт. Эра ракетостроения Произошло это знаменательное событие 16 марта 1926 года. А главным героем стал американский физик и инженер Роберт Годдард. Еще в 1914 году он запатентовал многоступенчатую ракету. Вскоре ему удалось воплотить в жизнь идею, предложенную Хаасом почти за четыреста лет до этого. В качестве топлива Годдард предлагал использовать бензин и оксид азота. После серии неудачных запусков, он добился успеха. 16 марта 1926 года на ферме своей тетушки Годдард запустил в небо ракету размером с человеческую руку. За две с небольшим секунды она взлетела в воздух на 12 метров. Любопытно, что позднее на основе трудов Годдарда будет создана Базука. Рис. 2 Герман Оберт Открытия Годдарда, Оберта и Циолковского имели большой резонанс. В США, Германии и Советском Союзе стали стихийно возникать общества любителей ракетостроения. В СССР уже в 1933 году был создан Реактивный институт. В том же году появился и принципиально новый тип оружия — реактивные снаряды. Установка для их запуска вошла в историю под именем «Катюша». В Германии развитием идей Оберта занимался уже знакомый нам Вернер фон Браун. Он создавал ракеты для германской армии и не оставил этого занятия после прихода к власти нацистов. Более того, Браун получил от них баснословное финансирование и неограниченные возможности для работы. При создании новых ракет использовался рабский труд. Известно, что Браун пытался протестовать против этого, но получил в ответ угрозу, что сам может оказаться на месте подневольных работников. Так была создана баллистическая ракета, появление которой предсказал еще Циолковский. Первые испытания прошли в 1942 году. В 1944-м баллистическая ракета дальнего действия «Фау-2» была принята на вооружение Вермахтом. С ее помощью обстреливали, в основном, территорию Великобритании (до Лондона с территории Германии ракета долетала за 6 минут). «Фау-2» несла страшные разрушения и вселяла страх в сердца людей. Ее жертвами стали как минимум 2700 мирных жителей Туманного Альбиона. В британской прессе «Фау-2» именовали «крылатым ужасом». Рис. 3 Варнер Фон Браун с фау- 2 После войны Американские и советские военные с 1944 года вели «охоту» за Брауном. Обе страны были заинтересованы в его идеях и разработках. Ключевую роль в решении этого вопроса сыграл сам ученый. Еще весной 1945 он собрал свою команду на совет, на котором решался вопрос о том, кому по окончании войны лучше сдаться в плен. Ученые пришли к выводу, что сдаваться лучше американцам. Сам Браун оказался в плену почти случайно. Его брат Магнус, увидев американского военного, подбежал к нему и сказал: «Меня зовут Магнус фон Браун, мой брат изобрел «Фау-2», мы хотим сдаться». В США Вернер фон Браун продолжил работу над ракетами. Теперь однако он трудился в основном для мирных целей. Именно он дал колоссальный толчок к развитию американской космической отросли, сконструировав для США первые ракеты-носители (разумеется, создавал Браун и боевые баллистические ракеты). Его команда в феврале 1958 запустила в космос первый американский искусственный спутник Земли. Советский Союз опередил США с запуском спутника почти на полгода. 4 октября 1957 года на орбиту Земли был выведен первый искусственный спутник. При его запуске была использована советская ракета Р-7, созданная Сергеем Королевым. Рис. 4 Сергей Королев Ракетные двигатели вРоссииВ 1912 году в Москве был открыт завод по производству авиационных двигателей. Предприятие входило во французское общество «Гном». Здесь создавались, в том числе, и моторы для самолетов Российской Империи в годы Первой мировой. Завод успешно пережил Революцию, получил новое название «Икар» и продолжил работу уже при советской власти.Авиационные двигатели создавались тут и в 1930-е, и в 1940-е, военные, годы. Моторы, которые производились на «Икаре», ставились на передовые советские самолеты. А уже в 1950-е предприятие стало выпускать турборакетные двигатели, в том числе и для космической отрасли. Сейчас завод принадлежит ОАО «Кузнецов», которое получило свое название в честь выдающегося советского авиаконструктора Николая Дмитриевича Кузнецова. Предприятие входит в структуру госкорпорации «Ростех». Электрический ракетный двигатель(ЭРД)Первый электрический реактивный двигательПод руководством Глушко был разработан первый в мире электротермический реактивный двигатель. Опытный образец был создан в СССР — в Газодинамической лаборатории в Ленинграде, которой заведовал Глушко, в 1929 году. В двигателе в камеру сгорания устанавливались специальные проводники (из железа, палладия других металлов), на эти проводники подавались кратковременные, но мощные импульсы электрического тока с определенной частотой. Сам процесс назывался "электрическим взрывом" — при прохождении разряда проводники в прямом смысле разрушались, выделяя водород, который истекал из сопла двигателя и создавал тягу. Позже работы по этим двигателям были свернуты из-за низкой мощности. Впервые в советской космической промышленности электрореактивные двигатели (ЭРД), но с иным принципом, были применены значительно позже — в 1964 году в космос был отправлен спутник "Зонд-2", с шестью установленными плазменными двигателями ориентации. В современной космической технике применяются различные ЭРД, например, ионный (ионизированный газ разгоняется в электрическом поле). Такие модели, как и первый двигатель Глушко, имеют малую тягу, но могут работать за счет низкого расхода рабочего тела чрезвычайно долго — до нескольких лет. В качестве маршевого ЭРД был, например, установлен на японском космическом аппарате "Хаябуса", запущенном для изучения астероида Итокава. ЭРД широко применяются на спутниках в качестве двигателей коррекции траектории.
Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами, они способны работать длительное время и осуществлять медленные полеты на большие расстояния. Самые совершенные на сегодняшний день электрические ракетные двигатели имеют ΔV до 100 км/с и при использовании ядерных источников энергии пригодны для полетов к внешним планетам Солнечной системы, но недостаточно мощные для межзвездного полета. Если же говорить о межзвездном полете, то электроракетный двигатель с ядерным реактором рассматривался для проекта Дедал, но был отвергнут из-за малой тяги, большого веса необходимого для преобразования ядерной энергии в электрическую, оборудования, и как следствие, небольшого ускорения, которому потребовались бы столетия для достижения нужной скорости. Однако электро-ракетный способ межзвездного полета теоретически возможен при внешнем источнике энергопитания через лазер на солнечные батареи космического аппарата. Химический ракетный двигатель(ХРД)Первые пороховые ракеты были изобретены в Китае. Точная дата их изобретения неизвестна (первое письменное упоминание относится к XIII веку). Эти ракеты были твердотопливными. В Средние века ракеты применялись в основном для развлечений, для устройства фейерверков. Интерес к ракетам начал расти в 1920-е — 1930-е годы, поскольку стало ясно, что ракетный принцип движения является единственным для осуществления самостоятельного, управляемого полёта в безвоздушном пространстве Первые в СССР жидкостные ракетные двигателиПод руководством Глушко после завершения работ по ЭРД впервые в отечественной космической промышленности была создана целая серия опытных ракетных двигателей, работающих на жидком топливе. Серия называлась ОРМ — опытные ракетные моторы. В качестве топлива в двигателях серии использовались керосин, бензин, толуол, другие вещества. Советские ученые экспериментировали как со смешанными унитарными, так и с двухкомпонентными топливами. Первые образцы, работавшие на унитарном топливе (ОРМ-1 тягой всего 20 кгс), были крайне несовершенны и терпели отказы, вплоть до аварийных ситуаций — двигатели взрывались на стендах во время работы. В итоге был сделан выбор в пользу более безопасной двухкомпонентной схемы — отдельные баки для горючего, отдельные для окислителя. Работы над двигателями серии ОРМ Газодинамическая лаборатория начала в 1930-х годах, и к 1933-му был создан достаточно мощный образец ОРМ-52 с тягой 300 кгс. Под этот двигатель был разработан целый ряд реактивных летательных аппаратов ("РЛА-1", "РЛА-2" и так далее), но их образцы "в железе" не создавались. По задумке инженеров, РЛА должны были взлетать на высоту нескольких километров и выбрасывать контейнер с метеоаппаратурой, которая затем опускалась бы на землю на парашюте. ОРМ-52 прошел официальные государственные испытания, правда, только на стенде. На одном из запусков образца двигателя в 1933 году присутствовал начальник вооружения Красной Армии маршал Михаил Тухачевский и дал работе лаборатории Глушко положительную оценку. В 1934 году коллектив Газодинамической лаборатории из Ленинграда был объединен с московской группой изучения реактивного движения (под руководством Сергея Павловича Королева) в Реактивный научно-исследовательский институт. Ученые совместными усилиями продолжили разработку двигателей и носителей под них. Коллектив Глушко создал образцы с номерами от ОРМ-53 до ОРМ-102. В частности, двигатель ОРМ-65 разработки Глушко ставился на созданную Королевым крылатую ракету — "объект 212". В 1939 году прошли ее испытания — ракета с ОРМ-65 достигла высоты 250 м, когда преждевременно раскрылся ее парашют. Двигатель ОРМ-65 работал на азотной кислоте и керосине, развивал тягу 150 кгс и мог работать до 80 секунд. Двигатели для баллистических и космических ракетС 1946 года Глушко был назначен главным конструктором ОКБ-456 в Химках (сейчас НПО "Энергомаш" — главный разработчик и производитель российских ракетных двигателей — прим. ТАСС). Здесь под его руководством созданы двигатели для первых советских баллистических ракет Р-1, Р-2 и Р-5.
Конструкция - В камере сгорания (КС) ХРД потенциальная (химическая) энергия топлива преобразуется в тепловую энергию в результате экзотермической реакции. Топливо, как правило, состоит из компонентов — горючего и окислителя. Из КС продукты реакции направляются в профилированный канал — реактивное сопло. В сопле ХРД газ адиабатически расширяется. Давление и температура газа падают с нарастанием объёма по адиабатическому закону. В результате расширения газ приобретает высокую скорость истечения из сопла. Таким образом, ХРД преобразует часть химической энергии топлива в кинетическую энергию газовой струи. Импульс газовой струи направлен по направлению истечения газов. Согласно закону сохранения импульса, при истечении газовой струи, струя и ракета получают одинаковые по модулю, но противоположенные по направлению импульсы. Другими словами, векторная сумма импульсов газа и ракеты равна нулю. Фактически это проявляется как возникновение реактивной тяги, развиваемой ХРД. Классификация ХРД По агрегатному состоянию топливаЖидкостный ракетный двигательОсобенности: Компоненты топлива хранятся в баках, вне камеры сгорания ХРД, находятся в жидком агрегатном состоянии. Они подаются в камеру сгорания через форсунки под давлением. Давление жидких компонентов создаётся либо с помощью турбонасосного агрегата, либо за счёт вытеснительной подачи, за счёт повышенного давления в баках. Описание: Этот тип получил широкое распространение на баллистических ракетах, ракетах-носителей для вывода космических аппаратов в космос. Жидкостные ракетные двигатели допускают регулирование тяги в широких пределах и многократное включение и выключение. Удельный импульс ЖРД (в вакууме): достигает 3308 м/c (РД-170). Удельная тяга (весовая): до 337,2 с (РД-170). Диапазон тяг: От нескольких десятков ньютонов. Пример: двигатель ориентации С5.79 тягой 122,6 Н, входящий в состав Объединённой двигательной установки (ОДУ). ОДУ впервые была разработана для орбитальной станции Мир, дальнейшее распространение получила на МКС[1]. До нескольких меганьютонов. Пример: самый мощный в мире (на момент написания статьи — апрель 2017 г.) РД-170 обладает тягой на уровне моря около 7,26 МН. Твердотопливный ракетный двигательОписание: Этот тип двигателей обладает такими важными достоинствами, как простота и надёжность. РДТТ обладает малым временем для перевода из состояния хранения в предпусковое состояние. Как правило, компоненты топлива представляют собой спрессованную смесь топлива и окислителя. Для запуска двигателя требуется внешний источник пламени. После запуска такой двигатель работает до полной выработки топлива, многократный запуск невозможен. Конструктивная простота и дешевизна обусловила широкое применение РДТТ в ракетомоделизме. Обладает ограниченными возможностями по регулированию величины тяги. Управление направлением вектора тяги может осуществляется газовыми рулями или поворотным реактивным соплом. Характерное время работы: От несколько секунд для неуправляемых боевых ракет и ракетомодельных двигателей До 122 с для бокового ускорителя МТКК «Спейс шаттл»[2] Удельная тяга (весовая): до 269 с для бокового ускорителя МТКК «Спейс шаттл» (в вакууме)[3] Диапазон тяг: От нескольких ньютонов для ракетных модельных двигателей До приблизительно 12,45 МН для бокового ускорителя МТКК «Спейс шаттл» (на уровне моря)[4]. Гибридный ракетный двигательОписание: Один из компонентов находится в твёрдом состоянии и хранится в КС, оставшиеся компоненты подаются аналогично жидкостному двигателю. Позволяет совместить конструктивную простоту РДТТ с полезными свойствами ЖРД (управление величиной тяги, многократный запуск). Этот тип не получил широкого распространения. Пример: Суборбитальный самолет «SpaceShipOne» использует гибридный двигатель на полибутадиене и диоксиде азота По количеству компонентовОднокомпонентные (монотопливные)К ХРД не могут быть отнесены однокомпонентные газовые двигатели (например, двигатели ориентации лунного модуля системы Аполлон, создающие тягу за счёт истечения струи сжатого азота). Но существуют многочисленные технические реализации однокомпонентных двигателей, где химическая энергия высвобождается за счёт экзотермической реакции его каталитического разложения в камере сгорания (например, перекись водорода, либо гидразин). Пример: двигатели ориентации спутника связи «Skynet-2». ДвухкомпонентныеБольшинство технических реализаций ХРД относится именно к этому типу. Топливо состоит из горючего и окислителя. Трёх- и более компонентныеПо сути, этот тип является модификацией предыдущего. К топливу добавляется дополнительный компонент (компоненты), служащие: либо для воспламенения основных компонентов (в том случае, если они самостоятельно не воспламеняются при контакте) — так называемое пусковое топливо для ЖРД либо служат для повышения температуры горения либо для повышения удельного импульса. Пример: стартовый ускоритель системы «Спейс Шаттл». Для РДТТ в состав смеси часто вносят какое-либо связующее вещество, обычно полимерное, для получения твёрдой топливной шашки, пригодной к длительному хранению и не разрушающейся механически при горении. Ядерный ракетный двигательВ СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва. К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования ведутся и в 2018 году. По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек. Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. Однако приоритеты изменились, и в 1965 году проект был закрыт. В СССР аналогичный проект разрабатывался в 1950—70-х годах. Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось. В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе. В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю Ядерный ракетный двигатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма). Твердофазный ядерный ракетный двигатель В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 8000—9000 м/с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей. Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР). Газофазный ядерный ракетный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30—50 тыс. м/с. Перенос тепла от топлива к теплоносителю достигается в основном за счёт излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C). Рис. 7 Ядерный ракетный двигатель Список использованных источников и основной литературыСтатья— Режим доступа:https://diletant.media/articles/26204196/, Проверено 09.10.2015 Материал из википедии — https://ru.wikipedia.org/Электрический_ракетный_двигатель, Проверено 05.07.2019 Материал из википедии — https://ru.wikipedia.org/wiki/Химический_ракетный_двигатель , Проверено 10.01.2019 Статья— Режим доступа: https://tass.ru/kosmos/5517188, Проверено 03.09.2019 Материал из википедии — https://ru.wikipedia.org/wiki/Ядерный_ракетный_двигатель , Проверено 02.03.2018 |