философия. частицы и взаимодействия. философия частицы и взаимод.. Реферат Семенар Частицы и взаимодействия
Скачать 23.18 Kb.
|
Реферат Семенар 6. Частицы и взаимодействия. Физика элементарных частиц находится на переднем крае фронта исследований структуры материи. Современное движение познания в более глубокую сущность вещей, к новому уровню строения материи связано с ломкой прежних физических представлений и развитием новых взглядов на сущность, структуру и закономерность как взаимодействий физических объектов на новом уровне, так и самих физических теорий. Проблема материи на протяжении тысячелетий стояла в центре внимания как философской, так и (с момента ее появления) естественнонаучной мысли. От первых наивных представлений об элементах и стихиях вплоть до современных представлений о кварках, глюонах, суперструнах и т.д. - вот путь, пройденный человеческим познанием. Все более и более глубокое проникновение в строение окружающего нас мира неизменно было связано с философским анализом проблемы материи. Сомнения вызывает само понятие “элементарные” применительно к частицам. Что имеется в виду, когда говорят, что такая-то частица – элементарная? Имеет ли вообще смысл разделение частиц на элементарные и неэлементарные? Гейзенберг в одной из своих статей подчеркивает противоречивость критерия элементарности. Иногда говорят, что для элементарной частицы вводится своя волновая функция и в этом состоит критерий элементарности. Встречается другой критерий: для элементарной частицы характерны значения заряда и спина, не превышающие определенных величин. Но для таких критериев нет никакой общей основы, они по существу произвольны. Они лишены того естественного характера, который Эйнштейн называл “внутренним совершенством” физической теории. Гейзенберг отвергает такие критерии, как, например, стабильность. Частицы при таком подходе оказываются элементарными или неэлементарными в зависимости от энергии: при одних энергиях частица стабильна, при других она распадается. Атомистический материализм Американский физик Ричард Фейнман, много сделавший для нашего понимания глубинных этажей микромира, как-то заметил, что если бы Земле грозила гибель и нужно было бы предельно кратко закодировать наше самое главное и ценное научное достижение, он выбрал бы слово «атом». В нем огромный информационный заряд. Знаменитый греческий ученый Фалес жил 2600 лет назад. Немногие свидетельства о его жизни, которые дошли до нас сквозь толщу тысячелетий, говорят, что это был общительный, жизнерадостный человек отменного здоровья, сочетавший занятия наукой со спортом. Но главная заслуга 4 Фалеса в том, что он первым поставил вопрос об исходных элементах мира. Он раньше всех увидел лестницу, ведущую в глубь вещества. Важные выводы о глубинных свойствах вещей сделали последователи Фалеса — Левкипп и его ученик Демокрит. Они пропустили ступеньку молекул и сразу шагнули на ступень атомов. Слово «атом», точнее «атмон», было известно задолго до Левкиппа и Демокрита. В переводе с греческого оно означает «неделимое». Так греки называли и букву алфавита. По Левкиппу и Демокриту, атомы — буквы материальной азбуки природы, бесконечное число твердых, неделимых далее частичек. Подобно семенам растений, атомы могут быть различной формы: они круглые, пирамидальные, плоские и так далее. Поэтому и состоящий из них мир неисчерпаемо богат в своих свойствах и качествах. Цепляясь друг за друга крючками и крючочками (такие крючочки есть и у семян растений), атомы образуют твердые тела. Атомы воды, наоборот, гладкие и скользкие, поэтому она растекается и не имеет формы. Атомы вязких жидкостей обладают заусеницами. Воздух — это пустота, в которой носятся отдельные редкие атомы. Даже у огня, учил Демокрит, есть свои атомы. Они острые и колючие, поэтому огонь и жжется. Атомистика Левкиппа и Демокрита предлагала простое наглядное объяснение многим непонятным тогда фактам: почему от прикосновений верующих стирается позолота и «худеют» руки статуй богов, почему мел остается мелом, как бы тонко его ни истолкли, как распространяются запахи. Ведь иногда стоит только коснуться какого-либо вещества, и его запах много часов, а то и дней, сохраняется на руках и одежде. Подобных загадок было много. Конечно, их можно было объяснить и по-другому, поэтому древнегреческая атомистика — это только предположение, гениальная гипотеза. Для того чтобы превратить ее в строгий научный вывод, потребовалось почти двадцать пять веков. В средние века, когда место науки заняла слепая вера в то, что ответы на все вопросы содержатся в святом писании, атомистику причисляли к изобретениям дьявола. Сторонников атомного учения преследовали еще в XVII веке. В 1624 году в Париже был издан специальный декрет, грозивший смертной казнью за устное или письменное распространение этого учения. Права гражданства атому вернули лишь в начале позапрошлого века в связи с успехами быстро развивавшейся химии. Без этого нельзя уже было разобраться в разнообразии химических реакций. Главную роль в восстановлении прав атома сыграл английский химик Джон Дальтон. Он же воскресил и стал широко использовать в своих трудах забытое греческое слово «атом». Атомная теория Дальтона не была простым повторением древнегреческой атомистики. В новой теории число различных типов атомов хотя и велико — много десятков (на сегодняшний день известно 109 различных атомов), но все же не бесконечно, как у Демокрита. Дальтон нашел много фактов, убедивших ученых в том, что атомы — это неделимые частицы ограниченного числа наипростейших веществ — химических элементов. Все остальные вещества состоят из тесно связанных больших и малых групп атомов — молекул. Они могут быть самыми различными — от одноатомных молекул металлов до страшно сложных, состоящих из десятков тысяч атомов белковых молекул. Это самая первая ступенька структурной лестницы, атомы — следующая. Элементарные частицы Каждая картина мира отличается от других критерием элементарности. Начиная с V века до н. э. и кончая XX веком, существовало представление о бесструктурных неизменных элементах, которые движутся с различной скоростью, создают ансамбли переменной конфигурации, и именно эти изменения – движения частиц (их можно проследить от точки к точке и от мгновения к мгновению) лежат в основе всех процессов природы. С такой точки зрения, бесструктурная частица есть неизменная частица, всякое изменение – это изменение структуры. Теперь представим себе, что и бесструктурные элементы могут изменяться. Значит, изменение в природе не сводится к изменению структуры, к разделению, соединению, вообще перемещению дискретных частей вещества. Частицы аннигилируют, рождаются, частицы одного типа превращаются в частицы другого типа, и маловероятно, чтобы распад частиц был когда-либо объяснен по аналогии 6 с распадом молекул и атомов. Элементарные частицы в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии "Элементарные частицы" в современной физике находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии. Термин "Элементарные частицы" часто употребляется в современной физике не в своём точном значении, а менее строго - для наименования большой группы мельчайших частиц материи, подчинённых условию, что они не являются атомами или атомными ядрами (исключение составляет простейшее ядро атома водорода - протон). Как показали исследования, эта группа частиц необычайно обширна. Помимо упоминавшихся протона, нейтрона и электрона к ней относятся: фотон, пи-мезоны, мюоны, нейтрино трёх типов (электронное, мюонное и связанное с тяжёлым лептоном), странные частицы (К-мезоны и гипероны), разнообразные резонансы, открытые в 1974-77 y-частицы, "очарованные"частицы, ипсилон-частицы и тяжёлые лептоны - всего более 350 частиц, в основном нестабильных. Число частиц, включаемых в эту группу, продолжает расти и, скорее всего, неограниченно велико; при этом большинство перечисленных частиц не удовлетворяет строгому определению элементарности, поскольку, по современным представлениям, они являются составными системами. Использование названия "Элементарные частицы" ко всем этим частицам имеет исторические причины и связано с тем периодом исследований (начало 30-х гг. 20 в.), когда единственно известными представителями данной группы были протон, нейтрон, электрон и частица электромагнитного поля - фотон. Эти четыре частицы тогда естественно было считать элементарными, т. к. они служили основой для построения окружающего нас вещества и взаимодействующего с ним электромагнитного поля, а сложная структура протона и нейтрона не была известна. Нарастание числа экспериментально обнаруживаемых субъядерных частиц, выявление у многих из них сложного строения показало, что они, как правило, не обладают свойствами элементарности, но традиционное название "Элементарные частицы" за ними сохранилось. Лептоны и кварки Лептоны — группа частиц, не участвующих в сильном взаимодействии (название происходит от греческого слова «лептос» — «легкий»). Хотя лептоны могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен Ѕ . Среди лептонов наиболее известен электрон. Электрон - это первая из открытых элементарных частиц. Как и все остальные лептоны, электрон, по-видимому, является элементарным (в собственном смысле этого слова) объектом. Насколько известно, электрон не состоит из каких-то других частиц. Другой хорошо известный лептон - нейтрино. Нейтрино являются наиболее распространенными частицами по Вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Но несмотря на такую распространенность нейтрино, изучать их очень сложно. Как мы уже отмечали, нейтрино почти неуловимы. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино - это некие "призраки физического мира". В 60-х годах список лептонов значительно расширился. Было установлено, что существует несколько типов нейтрино: электронное нейтрино, мюонное нейтрино и тау-нейтрино. Таким образом, общее число разновидностей нейтрино равно трем, а общее число лептонов - шести. Разумеется, у каждого лептона есть своя античастица; таким образом, общее число различных лептонов равно двенадцати. Нейтральные лептоны участвуют только в слабом взаимодействии; заряженные - в слабом и электромагнитном. Теория кварков - это теория строения адронов. Основная идея этой теории очень проста. Все адроны построены из более мелких частиц, называемых кварками. Значит, кварки - это более элементарные частицы, чем адроны. Кварки несут дробный электрический заряд: они обладают 8 зарядом, величина которого составляет либо -1 / 3 или +2 / 3 фундаментальной единицы - заряда электрона. Комбинация из двух и трех кварков может иметь суммарный заряд, равный нулю или единице. Все кварки имеют спин Ѕ ,поэтому они относятся к фермионам. Основоположники теории кварков Гелл-Манн и Цвейг, чтобы учесть все известные в 60-е гг. адроны ввели три сорта (аромата) кварков: u (от up- верхний), d (от down- нижний) и s (от strange - странный). Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк - антикварк. Из трех кварков состоят сравнительно тяжелые частицы - барионы, что означает "тяжелые частицы". Наиболее известны из барионов нейтрон и протон. Более легкие пары кварк - антикварк образуют частицы, получившие название мезоны - "промежуточные частицы". Например, протон состоит из двух u- и одного d-кварков (uud), а нейтрон - из двух dкварков и одного u-кварка (udd).Чтобы это "трио"кварков не распадалось, необходима удерживающая их сила, некий "клей". То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, стало триумфом теории кварков. Но в 70-е гг. были открыты новые адроны (пси-частицы, ипсилон-мезон и др.). Этим был нанесен удар первому варианту теории кварков, поскольку в ней уже не было места ни для одной новой частицы. Все возможные комбинации из кварков и их антикварков были уже исчерпаны. Проблему удалось решить за счет введения трех новых ароматов. Они получили название - charm (очарование), или с; b -кварк (от bottom - дно, а чаще beauty - красота, или прелесть); впоследствии был введен еще один аромат - t ( от top - верхний). Хотя и существует некоторая неудовлетворенность кварковой схемой, большинство физиков считает кварки подлинно элементарными частицами - точечными, неделимыми и не обладающими внутренней структурой. В этом отношении они напоминают лептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь. Современное состояние физики элементарных частиц Электроны, протоны, мезоны и другие частицы принято называть элементарными. Если атомы и их ядра можно разделить на более простые части, то с элементарными частицами это не удается. В любых известных сегодня реакциях эти частицы лишь переходят друг в друга — взаимопревращаются. Если в одной реакции, например, при распаде родились более легкие частицы, то в другой, наоборот, образуются тяжелые. Никаких более простых «кусков» от частиц не отщепляется. В то же время из них, как из кирпичиков конструктора, можно построить весь окружающий мир во всей его красоте и разнообразии. Взаимопревращения элементарных частиц Изучение физики элементарных частиц или, как ее еще называют, физики высоких энергий преследует целью именно ответить на вопрос о делимости вещества, а также более глубоко понять природу сил, определяющих поведение и взаимодействия элементарных частиц. Среди первых открытий на пути изучения природы элементарных частиц одно из наиболее интересных заключалось в установлении того факта, что каждая частица обязательно имеет определенный внутренний спин. Пока что нет никакого интуитивного объяснения причины того, что элементарные частицы обладают внутренним спином. Для частицы определенного сорта величина внутреннего спинового углового момента всегда одна и та же. Более того, внутренние спины различных частиц всегда могут быть выражены соответствующим образом через фундаментальную единицу спина, подобно тому как заряды частиц всегда представляют собой определенную сумму единичных зарядов. Фактически, все элементарные частицы можно подразделить на два класса: фермионы – частицы с полуцелыми спинами (1/2, 3/2, 5/2 и т.д.), и бозоны – частицы, которые обладают целым спином (0, 1, 2, 3, и т.д.). В современном представлении о веществе все многообразие частиц сводится к 6 лептонам (электрон, мюон, тау-лептон и соответствующие им нейтрино) и 6 кваркам (u,d,s,c,b,t) – фундаментальным фермионам – которые группируются в так называемые 3 поколения вещества, и 4 типам калибровочных бозонов, отвечающих за 4 фундаментальных взаимодействия: сильному соответствуют глюоны, слабому – W0 и Z ±, электромагнитному – фотон, гравитационному – гравитон (он экспериментально еще не открыт). Из всех взаимодействий только слабое взаимодействие может менять ароматы кварков и лептонов. Только оно может нарушать три так называемые дискретные симметрии: зарядовую – относительно зарядового сопряжения, т.е. относительно замены всех частиц в некотором процессе на соответствующие античастицы, эту симметрию обозначают С, зеркальную – относительно зеркального отражения, т. е. относительно замены некоторого процесса зеркально отраженным, эту симметрию обозначают Р, временную – относительно обращения времени, т.е. относительно замены некоторого процесса на обратный, эту симметрию обозначают Т. До 1956 г. физики считали эти три симметрии такими же незыблемыми, как и однородность и изотропию пространства и однородность времени. Однако некоторые странности в распадах странных мезонов навели на подозрение, что это не так, а специально поставленные опыты вскоре обнаружили, что во всех слабых процессах Р- и С-симметрии нарушаются максимально возможным образом. Единственной не нарушенной дискретной симметрией осталась в настоящее время CPT-симметрия – симметрия относительно произведения всех трех преобразований: С, Р и Т. Заметим, что одной только СТ-симметрии достаточно для того, чтобы были равны друг другу массы частицы и античастицы, а также их времена жизни. Стандартная теория электрослабого взаимодействия основана на так называемой электрослабой симметрии, которой отвечают четыре безмассовых векторных бозона: два заряженных и два нейтральных. В отличие, скажем, от цветовой симметрии, электрослабая симметрия в природе нарушена. В результате этого нарушения остается лишь один безмассовый векторный бозон – фотон. Три остальных бозона: W0, Z+ и Z- – приобретают массы. Кроме перечисленных выше частиц, Стандартная Модель предсказывает существование еще одного бозона – Хиггс-бозона (недавно открытого на Большом Адронном Коллайдере в ЦЕРНе). В современной теоретической физике хиггсовы бозоны играют очень важную роль. Во-первых, они дают массы лептонам, кваркам и промежуточным бозонам. Во-вторых, они ответственны за различия верхних кварков относительно нижних и существование девяти (а не трех) заряженных кварковых токов. В-третьих, с ними, по-видимому, связано нарушение СР симметрии и, возможно, Р-симметрии в слабых процессах. Коллайдеры высоких энергий понадобятся и для проверки еще одной теории – суперсимметрии. Суперсимметрия – это симметрия между фермионами и бозонами. Так, согласно простейшему варианту суперсимметрии, у каждой из уже известных частиц есть свой “суперпартнер”, спин которого отличается на 1/2. Таким образом, наиболее вероятное число истинно элементарных частиц (не считая переносчиков фундаментальных взаимодействий) на конец ХХ века равно 48. Из них: лептонов (6х2) = 12 плюс кварков (6х3)х2 =36. Античастицы Существование античастиц было предсказано П. А. М. Дираком. Полученное им в 1928 году квантовое релятивистское уравнение движения электрона (уравнение Дирака) с необходимостью содержало решения с отрицательными энергиями. В дальнейшем было показано, что исчезновение электрона с отрицательной энергией следует интерпретировать как возникновение частицы (той же массы) с положительной энергией и с положительным электрическим зарядом, то есть античастицы по отношению к электрону. Эта частица — позитрон — была открыта в 1932 году. В последующих экспериментах было установлено, что не только электрон, но и все остальные частицы имеют свои античастицы. В 1936 году в космических лучах были открыты мюон его античастица, а в 1947 — π — мезоны, составляющие пару частица — античастица; в 1955 в опытах на ускорителе зарегистрирован антипротон, в 1956 — антинейтрон, в 1966 — антидейтерий, в 1970 — антигелий, в 1998 — антиводород и т. д. К настоящему времени наблюдались античастицы практически всех известных частиц, и не вызывает сомнения, что античастицы имеются у всех частиц. Открытие античастиц принадлежит к числу тех сравнительно немногих научных достижений, которые приобретают самую широкую известность. Воображение людей поражает сама возможность полной трансформации вещества в излучение. Когда хотят сказать о предельной степени разрушения чего-либо, часто используют глагол «испепелить». При аннигиляции электрона с позитроном не остается даже пепла. Все вещество — целиком, без остатка — превращается в электромагнитное поле и уносится в пространство. Взрыв атомной или водородной бомбы освобождает лишь несколько процентов запасенной в веществе энергии, при аннигиляции происходит стопроцентное освобождение энергии. |