|
СРС ГД-22вв Омаров М.Б.. Реферат ст гр. Гд22вв Омаров М. Б. Проверил Мерченко И. А. Караганда 2022
НАО Карагандинский технический Университет имени А. Сагинова
Кафедра: РМПИ
Реферат
Выполнил: ст. гр. ГД-22вв
Омаров М.Б.
Проверил: Мерченко И.А.
Караганда 2022
Водная оболочка Земли покрывает почти 71 % ее поверхности (362 млн км2), что в 2,5 раза больше площади суши (149 млн км2, или 29 %), так что нашу планету можно назвать океанической. Объем вод океанов и морей оценивается в гигантскую цифру 1,4 млрд км3, тогда как вся гидросфера составляет 1,8 млрд км3. Распределение акваторий океанов таково, что в Северном полушарии, считающемся материковым, суша занимает 39,3 %, а океаны — 60,7 %. В южном, океаническом, полушарии — соответственно 19,1 и 80,9 %.
Геологическая деятельность океанов и морей осуществляется разными процессами: 1) абразией — разрушением береговых линий волнами, приливами, течениями; 2) переносом разнообразного материала, выносимого реками, образующегося за счет вулканизма, эоловой (ветровой) деятельности, разносимого льдом, а также растворенного вещества; 3) аккумуляцией, или отложением, осадков: биогенных, гидрогенных (эвапоритов, железомарганцевых конкреций), обломочных и космогенных (сферул); 4) преобразованием осадков в породы, или диагенезом и переотложением осадков. Прежде чем рассматривать геологические процессы в океанах и морях, необходимо сказать о свойствах самой водной массы и ее перемещении под действием различных сил.
14.1. СВОЙСТВА ОКЕАНСКОЙ ВОДЫ
Огромная масса воды в океанах на разных широтах и разных глубинах отличается по своим свойствам, что придает водной массе расслоенность, или стратифицированность.
Температура. Вода в океанах прогревается только в поверхностном слое, поэтому лишь 8 % океанских вод теплее +10 °С, а больше 50 % имеют температуру ниже +2,3 °С. Таким образом, океаны в целом холодные (рис. 14.1).
Температура в океанах с увеличением глубины быстро понижается, особенно в поверхностной зоне, мощностью до 200 м, теплый слой воды как бы плавает над более холодной толщей, которая отделяется от вышележащего слоя зоной резкого, скачкообразного изменения температуры и плотности, называемой термоклином (рис. 14.2). Верхний теплый слой, подверженный воздействию ветровых волн, называют перемешанным слоем, являющимся основным местом процессов фотосинтеза водорослей. На расстоянии по вертикали 100 м Т уменьшается на 10–12 °С. Различают постоянный и сезонный термоклины.
В поверхностном слое температура изменяется от +30 °С в низких широтах до 0 °С в высоких широтах. Среднегодовая температура воды около +17 °С, но она выше в Северном полушарии (+19 °С), чем в южном (+16 °С). На глубинах примерно 4 км Т составляет от 0 °С до +1 °С, а в придонном слое мощностью 200 м — до –1 °С.
Плотность вод Мирового океана зависит от температуры, солености и давления, т. е. от глубины. Плотность воды возрастает с глубиной, что определяет стратификацию водной толщи (рис. 14.3). Известно, что при Т = +20 °С плотность пресной воды составляет 1,0 г/см3, а морской воды с соленостью 35 ‰ — 1,025 г/см3. При Т = +2 °С плотность увеличивается до 1,028 г/см3, на глубине 5 тыс. м — 1,050 г/см3, а на глубине 10 тыс. м — 1,077 г/см3 (рис. 14.4).
На увеличение плотности влияют повышение солености, понижение температуры и возрастание давления. Увеличение плотности воды приводит к ее погружению, что переводит обогащенные кислородом поверхностные воды на более низкий уровень. В Атлантическом океане наименьшая плотность воды наблюдается в районе экватора, а наибольшая — на широтах 60°. Самая высокая плотность океанской воды отмечена вокруг Антарктиды в связи с формированием ледяных полей.
Соленость Мирового океана — это общее количество растворенного вещества, в основном NaCl. Соленость океанов в среднем 34,69 г/кг, или 34,69 ‰ промилле (частей на тысячу). 75 % всех вод Мирового океана имеют соленость от 34,5 до 35 ‰, но распределяется она неравномерно и зависит от количества выпадающих осадков, испарения, близости устьев крупных рек, таяния льдов и т. д. (рис. 14.5, 14.6). В Красном море соленость на севере равняется 41 ‰. Повышенной соленостью, до 39 ‰, характеризуется Средиземное море в своей восточной котловине. На дне Красного моря, где в современных рифтах выходят нагретые рассолы, соленость достигает 310 ‰. Очень высокой соленостью характеризуются лагуны и заливы, отшнурованные от моря. В то же время моря, в которые впадает большое количество рек, обладают низкой соленостью, особенно вблизи устьев рек. Так, в Каспийском море средняя соленость составляет 12–15 ‰, а в северной части 3–5 ‰, что обусловлено притоком пресных волжских вод, в заливе Кара-Богаз-Гол соленость равна 164 ‰. В Черном море соленость больше — 17–18 ‰, зато в Балтийском море соленость воды в поверхностном слое не превышает 3–6 ‰.
Давление в океанских водах возрастает на 1 атм на 10 м глубины. Поэтому в наиболее глубоководных районах океанов давление увеличивается до огромных величин 800–1100 атм.
Химический и газовый состав морской воды. В океанской воде содержатся практически все химические элементы, но только ионы Na и Cl играют решающую роль (рис. 14.7). Преобладают хлориды (89,1 %), сульфаты (10,1 %), и совсем ничтожную долю составляют карбонаты (0,56 %), а соли, находящиеся в растворе, диссоциируют на анионы и катионы. Океанская вода по своему составу отвечает продуктам эмиссии кислых газов вулканов с образованием гидрохлорноватой, серной, угольной кислот и выщелачивания силикатных пород (МеSi аAlвOс), где Ме — Na, K, Mg, Ca. Остальное — это нерастворимые окислы Si и Al, т. е. глинистые минералы.
В течение фанерозоя, т. е. примерно за 600 млн лет, состав воды и ее соленость практически не менялись. Это возможно только в том случае, если приток солей равняется их удалению из воды. СаСО3 связывается в известковых скелетах организмов, Si — в опалиновых скелетах, Ме — в новообразованных минералах, S — в сульфидах тяжелых металлов в анаэробных условиях и т. д. В отличие от океанской воды речная вода — это раствор бикарбоната кальция и кремнистой кислоты, т. е. если в морской воде основную долю составляют хлориды, то в речной — карбонаты, свидетельствующие о том, что соленость океана не связана с привносом реками солей.
Газы, как и соли, растворены в океанской воде. Главными являются кислород, углекислый газ и азот.
Кислород поступает в воду прежде всего из атмосферы, а также за счет фотосинтеза растений (фитопланктона). Растворимость кислорода в воде уменьшается с повышением температуры, чем объясняется его низкое содержание в приэкваториальной зоне. Зато в высоких широтах наблюдается обогащение кислородом холодных вод.
При температуре 0 °С вода поглощает кислорода и азота в два раза, а углекислого газа — в три раза больше, чем при температуре +30 °С. При средней солености морских вод в 35 ‰ 1 л воды при давлении 760 мм рт. ст. поглощает кислорода при температуре –2 °С — 8,47 см3, +15 °С — 5,84 см3, а при +30 °С — только 4,50 см3.
Взаимный обмен кислородом между атмосферой и океанскими водами происходит в связи со сменой сезонов, когда летом океан прогревается, избыток кислорода выделяется в атмосферу, а зимой при охлаждении океана, кислород поглощается из атмосферы и растворяется в воде. Глубоководные слои в океанах обогащаются холодными, тяжелыми, насыщенными кислородом водами, поступающими из высоких широт.
Углекислый газ в океанской воде находится либо в свободном состоянии, либо в химически связаном — в карбонатах и бикарбонатах. Содержание СО2 в воде составляет около 45 см3/л, причем 50 % его приходится на свободный СО2, а другие 50 % находятся в связанном состоянии. Растворимость СО2, так же как и О, уменьшается с повышением Т. Поэтому в низких широтах, где растворимость СО2 в воде уменьшается, углекислота выделяется в атмосферу, в высоких широтах, наоборот, поглощается. Максимальное содержание СО2 наблюдается в холодных придонных водах, которые растворяют известковые раковины планктонных организмов, не достигающих по этой причине океанского дна. Закономерность содержания СО2 в океанских водах влияет на образование и сохранность карбонатных осадков.
Сероводород присутствует в морской воде только в тех водоемах, где затруднен обмен воды с открытым океаном, например в Черном море.
Рассмотрение основных параметров океанской и морской воды показывает, насколько это сложная система, все составляющие которой тесно взаимодействуют между собой. Пожалуй, наиболее важный вывод заключается в установлении факта стратификации, т. е. слоистости океанских вод.
Поэтому вертикальный разрез океанских вод характеризуется неоднородностью, наличием слоев с разной соленостью, температурой и плотностью, слабо перемешивающихся между собой. Если температурный скачок называется термоклином, то резкое изменение солености — галоклином, а изменение плотности — пикноклином.
Органические частицы, столь широко распространенные во взвеси верхнего водного слоя, благодаря своему объемному весу, близкому к таковому у океанской воды, задерживаются в термоклине и служат пищей для зоопланктона и бактерий. С другой стороны, более глубинные и холодные воды, богатые фосфатами, не могут пробиться в верхние слои водной массы океана, т. к. для них препятствием служит хорошо перемешанная и теплая вода термоклина. Перечисленные выше свойства морской воды меняются от слоя к слою очень резко, поэтому водные слои могут как бы скользить друг по другу, а вода при этом перемещается на большие расстояния.
14.2. ДИНАМИЧЕСКИЙ РЕЖИМ МИРОВОГО ОКЕАНА
Вода океанов и морей находится в непрерывном движении. Эта циркуляция в поверхностных и глубинных зонах носит различный характер и определяется разными факторами.
Поверхностная циркуляция зависит в основном от ветров нижней атмосферы, влияющих на перемещение воды в самом верхнем слое. Характер циркуляции обусловлен перемещением атмосферы и вращением Земли (рис. 14.8).
Поэтому в средних и низких широтах Северного полушария ветры образуют круговорот воды по часовой стрелке, а в Южном — против. Это главные океанские антициклонические круговые течения (рис. 14.9), которые не меняются от временного изменения направления ветра, т. к. обладают огромной инерцией. Только в северной части Индийского океана течения меняются из-за смены летнего и зимнего муссонов. Наиболее мощное течение — это циркумполярное, окружающее Антарктиду кольцом и перемещающееся с запада на восток с расходом воды 200 ⋅ 106 м3/с, тогда как у других течений эта величина составляет (15–50) ⋅ 106 м3/с, кроме Гольфстрима: 100 ⋅ 106 м3/с (рис. 14.10). Круговые течения в океанах особенно сильны и узки по ширине в западной половине круговорота и более расплывчаты в восточной. Они служат переносчиком тепла. Нагреваясь около экватора в Северном полушарии, вода переносит тепло далеко на восток, пример тому — Гольфстрим.
Все круговые течения с их асимметрией обусловлены вращением Земли с запада на восток. В 1835 г. Ж. де Кориолис установил влияние вращения Земли на движущуюся жидкость, которое в его честь было названо ускорением Кориолиса (рис. 14.11).
Суть этого влияния заключается в том, что направление вращения Земли в Северном и Южном полушариях имеет различную ориентацию, если смотреть с Северного и Южного полюсов соответственно. С Северного — против часовой стрелки, с Южного — по часовой. Неподвижное тело на экваторе вращается со скоростью 1670 км/ч, при длине окружности 40 тыс. км. По направлению к полюсам скорость вращения уменьшается, и на полюсах она равна 0. Поэтому, чтобы выполнить закон сохранения количества движения, необходимо, чтобы частица, движущаяся от экватора к полюсу, смещалась к востоку по сравнению с неподвижными частицами, а от полюса — к экватору к западу, т. е. они отклоняются вправо по отношению к направлению движения. В Южном полушарии их движение будет, естественно, противоположным. Несмотря на то что ускорение Кориолиса мало — 1,5 · 10–4 V sinφ см/с2, где V — скорость, а φ — широта, его влияние на воды океана и атмосферу очень велико, т. к. ускорение Кориолиса действует в горизонтальной плоскости. Поэтому ускорение Кориолиса играет важную роль в движении океанских вод.
Так как вода в океанах стратифицирована, то даже небольшие различия в ее плотности приводят воду в движение, и сразу же она подвергается влиянию ускорения Кориолиса. Течения, где градиент давления, т. е. перепад плотностей, соответствует ускорению Кориолиса, называют геострофическими (плотностными). Обычно они направлены вдоль зон воды с разной плотностью. Врезультате нагона воды из-за дующих ветров и течений уклон поверхности воды может достигать 1 м на 100 км. Такое явление наблюдается в поперечном сечении Гольфстрима.
Течения, вызванные деятельностью ветра, уменьшают свою скорость с глубиной ввиду трения слоев в водной толще. На поверхности океана вода не движется точно по направлению ветра, а с действием ускорения Кориолиса течение будет направлено под углом 45° к направлению ветра, причем чем глубже расположен слой воды, тем отклонение от направления ветра будет больше. Подобная закономерность была установлена в 1902 г. В. В. Экманом и получила наименование спирали Экмана.
Апвеллинг представляет собой очень важное явление и заключается в подъеме воды в океанах с уровня термоклина или более глубоких слоев воды в силу разных причин. Это и ветер, сгоняющий теплую воду с поверхности; и действие ускорения Кориолиса; и конфигурация береговой линии; и разница в плотности воды (рис. 14.12). Значение процесса апвеллинга заключается в выносе к поверхности вод, относительно богатых разнообразными питательными веществами, обогащающими поверхностные слои компонентами, увеличивающими биопродуктивность. Поэтому апвеллинг, помимо других факторов, контролирует тип биогенных осадков: карбонатных, кремнистых, фосфатных. С апвеллингом связана низкая температура воды у побережий Калифорнии и Южной Америки, Северо-Западной и Юго-Западной Африки. В этих случаях важную роль играют пассаты, которые, дуя с востока на запад, постоянно сдувают нагревающийся поверхностный слой воды, а на смену ему поднимаются холодные глубинные воды.
Глубинная циркуляция отличается от поверхностной тем, что ее движущей силой является разница в плотности вод, обусловленная их охлаждением в высоких широтах, опусканием в придонные глубоководные области, а на смену этим холодным водам из низких широт поступают более нагретые воды. Так осуществляется глубинный круговорот, а придонные течения со скоростями 1–5 см/с были открыты в 1960 г. Основными поставщиками холодных придонных вод являются районы Северной Атлантики, и особенно Антарктиды (рис. 14.13). Холодные плотные воды, сформировавшиеся вокруг Антарктиды около 15 млн лет назад, составляют почти 60 % всех вод Мирового океана, достигая примерно 45° с. ш. в Тихом и Атлантическом океанах. А само Циркум-Антарктическое течение зародилось в раннем кайнозое при разделении Австралии и Антарктиды и возникновении пролива Дрейка между Южной Америкой и Антарктическим полуостровом. Эти воды богаты кислородом и обладают температурой +2...+3 °С. В их образовании большую роль играют морские льды соленостью не более 30 ‰. Следовательно, подледная вода становится солонее и плотнее, опускается на дно и движется в низкие широты. Так как придонные течения следуют вдоль линий равной глубины — изобат, их называют контурными течениями и они обычно двигаются вдоль рельефа дна, а не перемещаются поперек придонных поднятий.
Описанные выше течения, вызванные разными причинами, местами движутся навстречу друг другу, и тогда возникают зоны конвергенции. Когда же течения как бы расходятся в разные стороны, образуются зоны дивергенции, которые благодаря подъему холодных плотных вод, обогащенных кислородом, в свою очередь, богаты биогенным веществом, что определяет характер осадконакопления в этих зонах. Хорошо известен экваториальный апвеллинг, вдоль которого наблюдается высокая биопродуктивность.
Приливы и отливы. Уровень океана в течение суток не остается постоянным. Он периодически то повышается, то понижается. Приливные силы возникают из-за действия масс Луны и Солнца на частицы воды в океанах. Луна расположена ближе к Земле, поэтому ее влияние на Землю больше, чем Солнца с его неизмеримо большей массой. Двойная система Земля — Луна вращается вокруг оси, находящейся на расстоянии 0,73 радиуса Земли от ее центра. Силы притяжения различных частиц Земли Луной не совсем одинаковые, т. к. частица в точке экватора, обращенной к Луне, притягивается сильнее, чем частица, расположенная на противоположной стороне экватора. Следовательно, приливообразующая сила — это разность сил притяжения Луны или Солнца в любой из точек на поверхности и в ее центре.
Земля вращается вокруг своей оси значительно быстрее, чем Луна вокруг Земли. Поэтому два приливных «горба» движутся по поверхности Земли в направлении, противоположном ее вращению. Это не только вызывает морские приливы, но и приводит к торможению вращения Земли. Так как суммарный момент количества движения в системе Земля — Луна остается неизменным, то Луна должна отдаляться от Земли, что и происходит.
Приливы достигают наибольшей величины в новолуние и полнолуние, т. е. когда Земля, Луна и Солнце находятся на одной прямой (рис. 14.14). Это положение называется сизигеем, и при нем воздействия Солнца и Луны на Землю суммируются и возрастают. В то же время, когда Луна находится в первой или последней четверти, т. е. линии Земля — Луна и Земля — Солнце образуют прямой угол, приливы минимальны. Так возникает полумесячное неравенство приливов.
Высота приливов в открытом океане крайне мала, около 1 м, но эти движения охватывают всю водную толщу. Вблизи побережий, в зоне мелководного шельфа или в узких заливах, эстуарий рек высота приливов увеличивается, достигая 18 м на северо-восток Канады или в Пенжинской губе (эстуарии) северной части Охотского моря (13 м), а в Черном море приливно-отливные колебания захватывают всего лишь 10 см.
Движение волн. Океанские и морские волны характеризуются круговыми движениями частиц воды, причем верхняя часть круга движется по направлению движения волны, а нижняя — в противоположную (рис. 14.15).
Но каждая частица воды, хотя и движется по орбитам с равными радиусами, но имеет некоторый сдвиг по фазе с небольшим запаздыванием по отношению к предыдущей фазе. Поэтому волновой профиль смещается в направлении действия ветра, и скорость этого смещения носит название фазовой скорости волны.
К элементам волны относятся: скорость — С, период — τ, длина — L, высота — Н.
T = L/С или L = С τ, а Н определяется величиной энергии, передаваемой от ветра воде. Периодом волны называется время, за которое волна проходит расстояние, равное длине волны, ее фронтом — линия, проходящая вдоль гребня волны. В открытом океане при нормальном ветре высота волн бывает от 0,3 до 5 м, а при сильном шторме в 9 баллов — до 15 м. В северной части Тихого океана в 1933 г. наблюдалась волна высотой в 34 м. Во время цунами — образования волн вследствие землетрясения — высота волны у берега может достигать 30–40 м, а в 1971 г. у островов Рюкю в Японии высота волны цунами достигла фантастической величины 85 м! Большинство океанских волн имеет длину 50–450 м при скорости от 25 до 90 км/ч на глубокой воде.
Круговые движения частиц воды в волне быстро уменьшаются с глубиной и постепенно сходят на нет на уровне, соответствующем половине длины волны. Таким образом, волновыми движениями затрагивается только самая поверхностная часть водного слоя, хотя существуют плохо изученные внутренние волны в термоклине.
Поведение волн в прибрежных районах резко отличается от такового в открытом океане. Как только глубина воды становится меньше четверти длины волны, последняя касается дна и круговые движения частиц воды становятся эллипсоидальными, уплощаясь ко дну, а на самом дне движения осуществляются только назад-вперед и скорость волны у дна резко замедляется. Скорость гребня волны опережает скорость в ее подошве, длина волны уменьшается, но сразу увеличиваются ее высота и крутизна склона, обращенного к берегу (рис. 14.16). Верхняя часть волны забурунивается и опрокидывается на ее передний склон, который всегда используют любители виндсерфинга, скользя с него, как с горы.
Наконец волна всей тяжестью гребня обрушивается на отмелый берег, таща за собой песок и гальку и формируя широкую полосу пляжа. Если волна подходит к приглубому берегу, то она всей своей массой ударяет в береговую кромку или обрыв, разрушая его.
Нельзя не упомянуть о таком явлении, как нагон воды при сильных и длительно дующих в сторону суши ветрах в районах низменных побережий. При таких процессах вода как бы сдувается с поверхностного слоя и перемещается, создавая подъем уровня. Так, с нагонами связаны наводнения в Санкт-Петербурге, когда ветер дует с запада на восток вдоль Финского залива. В Мексиканском заливе высота нагонных волн достигает 5 м, в Бенгальском — 6, в Северном Каспии — 2–3 м.
Такие колебания уровня воды, охватывающие все море целиком, называются сейшами. Они особенно типичны для внутриматериковых морей, таких как Балтийское, Азовское, Черное. Высота сейш в последнем достигает 60 см.
|
|
|