днк. ДНК. Репликация днк. Ферменты репликации
Скачать 19.09 Kb.
|
ДНК состоит из нуклеотидов, в состав которых входят сахар – дезоксирибоза, фосфат и одно из азотистых оснований – пурин (аденин или гуанин) либо пиримидин (тимин или цитозин). Молекулы ДНК включают в себя 2 полинуклеотидные цепи, соединенные друг с другом азотистыми основаниями с помощью водородных связей по принципу комплементарности (аденин -2вод.связи-тимин, гуанин-3вод.связи-цитозин). Цепи антипараллельны: 5’-конец одной цепи соединяется с 3’-концом другой цепи. Чаще всего спирали правозакрученные. В структурной организации молекулы ДНК можно выделить первичную структуру – полинуклеотидную цепь, вторичную структуру – две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями, и третичную структуру – трехмерную спираль с приведенными выше пространсвенными характеристиками. Функции ДНК – сохранение и передача наследственной информации от клетки к клетке, от организма к организму (в основе этой функции лежит репликация ДНК); регуляция всех процессов, протекающих в клетке (в основе этой функции лежит транскрипция). Свойства: способность к самокопированию (репликации), к молекулярному восстановлению (репарации). Функции ДНК: * Молекулы ДНК хранят (содержат) наследственную информацию (программу) о структуре специфических для каждого организма белков. * Молекулы ДНК обеспечивают передачу наследственной информации от клетки к клетке, от организма к организму. * Молекулы ДНК участвуют в реализации генетической информации, т. е. участвуют в процессе синтеза полипептидов. Репликация ДНК. Ферменты репликации Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа: 1. инициация репликации 2. элонгация 3. терминация репликации. Суть репликации днк заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5- к З-концу (лидирующая цепь), помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к З'-концу вновь синтезируемой цепи ДНК. На второй нити ДНК (отстающая нить) новая ДНК образуется в виде небольших сегментов, состоящих из 1000-2000 нуклеотидов (фрагменты Оказаки). Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Репарация или исправление поврежденных участков одной из цепей ДНК рассматривается как ограниченная репликация. Наиболее изучен процесс репарации при повреждении цепи ДНК ультрафиолетовым (УФ) излучением. В клетках существуют несколько ферментных систем репарации, сформировавшихся в ходе эволюции. Поскольку все организмы развились и существуют в условиях УФ-облучения, то в клетках имеется отдельная система световой репарации, наиболее изученная в настоящее время. При повреждении молекулы ДНК УФ-лучами образуются тимидиновые димеры, т.е. «сшивки» между соседними тиминовыми нуклеотидами. Эти димеры не могут выполнять функцию матрицы, поэтому их исправляют ферменты световой репарации, имеющиеся в клетках. Виды репарации: Фоторепарация (эксцизионная) репарация восстанавливает поврежденные участки различными факторами. Дорелекативная репарация (ошибки до синтеза) Пострепликативная репарация является неполной, так как идет «в обход», и поврежденный участок из молекулы ДНК не удаляется. Генеалогический метод - это метод изучения характера наследования определенного признака или оценки вероятности его появления в будущем у членов изучаемой семьи. Данный метод основан на выяснении родственных связей (родословной) и прослеживании признака среди всех родственников. Суть данного метода состоит в установлении родословных связей и определении рецесссивных и доминантных признаков, а также характера их наследования. Тип наследования • Аутосомно-доминантный • Аутосомно-рецессивный • Х-сцепленный доминантный • Х-сцепленный рецессивный • У-сцепленный Близнецовый метод - это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкретных признаков или заболеваний у человека. При использовании близнецового метода проводится сравнение: 1) монозиготных (однояйцевых) близнецов — МБ с дизиготными (разнояйцевыми) близнецами — ДБ; 2) партнеров в монозиготных парах между собой; 3) данных анализа близнецовой выборки с обшей популяцией. Монозиготныеблизнецы образуются из одной зиготы, разделившейся на стадии дробления на две (или более) части. С генетической точки зрения они идентичны, т.е. обладают одинаковыми генотипами. Монозиготные близнецы всегда одного пола. Имеют одну плаценту. Дизиготные близнецыразвиваются в том случае, если одновременно две яйцеклетки оплодотворены двумя сперматозоидами. Естественно, дизиготные близнецы имеют различные генотипы. Они сходны между собой не более, чем братья и сестры, т.к. имеют около 50 % идентичных генов. Если какой-либо признак встречается у обоих близнецов одной пары, то она называется конкордантной,если же у одного из них, то пара близнецов называется дискордантной (конкордантность — степень сходства,дискордантность —степень различия). При сопоставлении моно- и дизиготных близнецов определяют коэффициент парной конкордантностн, указывающий на долю близнецовых пар. в которых изучаемый признак проявился у обоих партнеров. Коэффициент конкордантностн (Кп) выражается в долях единицы или в процентах и определяемся по формуле: Кп = С \ С+Д где С — число конкордантных пар. Д — число дискордантных пар. Сравнение парной конкордантностн у моно- и дизиготных близнецов дает ответ о соотносительной роли наследственности и среды в развитии того или иного признака или болезни. При этом исходят из предположения о том, что степень конкордантностн достоверно выше у монозиготных, чем у дизиготных близнецов, если наследственные факторы имеют доминирующую роль в развитии признака. Если значение коэффициента конкордантностн примерно близко у монозиготных и дизиготных близнецов, считают, что развитие признака определяется главным образом негенетическими факторами, т.е. условиями среды. Если в развитии изучаемого признака участвуют как генетические, так и негенетические факторы, то у монозиготных близнецов наблюдаются определенные внутрипарные различия. При этом различия между моно- и дизиготными близнецами по степени конкордантностн будут уменьшаться. В этом случае считают, что к развитию признака имеется наследственная предрасположенность. Для количественной оценки роли наследственности и среды в развитии того или иного признака используют различные формулы. Биохимический метод является основным в диагностике многих моногенных болезней, приводящих к нарушению обмена веществ. Объектами биохимической диагностики являются биологические жидкости: кровь, моча, пот, амниотическая жидкость и т.д. С помощью данного метода можно определить в биологических жидкостях активность ферментов или содержание некоторых продуктов метаболизма. Практически во всех случаях биохимическая диагностика включает 2 уровня: первичный и уточняющий. Целью первичного уровня диагностики является исключение здоровых индивидов из дальнейшего обследования, для этого используют 2 вида программ диагностики: массовые и селективные. Массовые просеивающие программы применяют для диагностики у новорожденных таких заболеваний как фенилкетонурия, врожденный гипотериоз, муковисцедоз, галактоземия. Например, для диагностики фенилкетонурии кровь новорожденных берут на 3-5 день после рождения. Капли крови помещают на хроматографическую или фильтровальную бумагу и пересылают в лабораторию для определения фенилаланина. Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни. В селективных программах могут использоваться простые качественные реакции (например, тест с хлоридом железа для выявления фенилкетонурии или тест с динитрофенилгидрозином для выявления кетокислот в моче) или более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов. С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий. |