Современное преподавание математики в общеобразовательной школе.. Решение уравнений, требующих предварительного упрощения с помощью формул сокращенного умножения
Скачать 35.21 Kb.
|
Современное преподавание математики в общеобразовательной школе Цель: Ввести понятие целого уравнения, степень уравнения. Умение определять степень уравнения, тип уравнений; Различные способы решения уравнений, высших степеней. Безошибочно находить методы решения уравнений; Решение уравнений, требующих предварительного упрощения с помощью формул сокращенного умножения. Блок №1 Решить различные уравнения уже известными способами. Цель: Закрепить знания и умения, полученные ранее. Таблица №1 служит разминкой для дальнейшего решения уравнений более высокой степени. Следует решить два уравнения из таблицы, проверить результат, и если вы успешно справились, то перейти к следующему заданию. ТАБЛИЦА №1
Блок №2 Решить уравнения, сделав замену переменных. Цель: Закрепить способ решения уравнений, используя замену переменных. Пример– образец №1. Решить уравнение (х2+2х)2 – 2(х2+ 2х) = 3 Решение: Запишем равносильное данному уравнение (х2+ 2х)2 – (х2+ 2х) –3 =0, сделаем замену переменных, выражения в скобках одинаковые, поэтому можно записать: Замена: х2 + 2х =у Перепишем получившееся уравнение и решим его. у2– 2у – 3= 0 Д= в2– 4ас= (–2)2– 4·1·(–3)= 16 у= 3, у= –1 Вернемся теперь к переменной х, сделаем обратную замену и решим два уравнения. Обратная замена: х2 +2х = 3 или х2+2х = –1 х2 +2х – 3= 0 х2 + 2х +1= 0 Д= 16 Д=0, 1 корень х= 1, х= – 3 х= –1 Ответ: 1, –3, –1. ТАБЛИЦА №2
Блок №3. Решение биквадратных уравнений. Цель: Закрепить способ решения биквадратных уравнений.
Пример– образец №2 Решить биквадратное уравнение х4 – 5х2 + 4 = 0 Решение: х4 –5х2 + 4 = 0, биквадратное уравнение, сделаем замену переменной и решим получившееся квадратное уравнение. Замена: х2= t 0 t2–5t +4 = 0 D= 9 t= 4, t= 1 Оба корня положительные, поэтому удовлетворяют условию t 0. Обратная замена: х2 = 4 или х2 = 1 х= х= х =±2 х =±1 Ответ: ± 2, ± 1. ТАБЛИЦА №3
Блок №4. Решить уравнения высшей степени. Цель: Закрепить разные способы решения уравнений высших степеней. Если, ребята, вы добрались до 4 блока, поздравляю вас, вы делаете успехи. Сейчас вам предстоит самостоятельно выбирать способ решения, переменную, которую нужно заменить. КАРТОЧКА №4
Блок №5. Указания учителя. Молодцы!!! Вы, ребята, освоили решение уравнений высших степеней. Целью дальнейшей вашей работы является применение своих знаний и умений в более сложных ситуациях. КАРТОЧКА №5
Указания учителя. В случае затруднений воспользуйтесь подсказками, данными ниже. Подсказки. 1. Воспользуйтесь формулой (а–в)(а+в)= а2– в2, преобразуйте данное уравнение в биквадратное. 2. Сгруппируйте первое слагаемое со вторым, третье с четвертым и пятое с шестым, примените способ группировки и разложите на множители. 3. Сделайте замену и запишите условие, при котором уравнение не имеет корней, решите получ |