Главная страница

Проектирование освещения. Решение задач при расчете освещения второго вида производится, если мощность ламп точно задана, например необходимо применить светильники с люминесцентными лампами мощностью 80 Вт


Скачать 208.83 Kb.
НазваниеРешение задач при расчете освещения второго вида производится, если мощность ламп точно задана, например необходимо применить светильники с люминесцентными лампами мощностью 80 Вт
АнкорПроектирование освещения
Дата12.10.2021
Размер208.83 Kb.
Формат файлаdocx
Имя файлаПроектирование освещения.docx
ТипРешение
#245939
страница1 из 3
  1   2   3

Методы расчета освещения
Светотехническим расчетом могут быть определены:

мощность дамп, необходимая для получения заданной освещенности при выбранном типе, расположении и числе светильников,

число и расположение светильников, необходимых для получения заданной освещенности при выбранном типе светильников и мощности ламп в них,

расчетная освещенность при известном типе, расположении светильников и мощности ламп в них.

Основными при проектировании являются задачи первого вида, поскольку тип светильников и их расположение должны выбираться исходя из качества освещения и его экономичности.

Решение задач при расчете освещения второго вида производится, если мощность ламп точно задана, например необходимо применить светильники с люминесцентными лампами мощностью 80 Вт.

Задачи третьего вида решаются для существующих установок, если освещенность невозможно измерить, и для проверки проектов и расчетов, например, для проверки точечный методом расчетов, выполненных методом коэффициента использования.

Выполнение светотехнических расчетов возможно методами:

  • методом коэффициента использования светового потока,

  • методом удельной мощности,

  • точечным методом.

Метод коэффициента использования применяется для (расчета общего равномерного освещения горизонтальных поверхностей при светильниках любого типа.

Метод удельной мощности применяется для приближенного предварительного определения установленной мощности осветительной установки.

Точечный метод расчета освещения применяется для расчета общего равномерного и локализованного освещения, местного освещения независимо от расположения освещаемой поверхности при светильниках прямого света.

Кроме вышеуказанных методов расчета освещения, имеется комбинированный метод, который применяется в тех случаях, когда неприменим метод коэффициента использования, а светильники не относятся к классу прямого света.

Для некоторых видов помещений (коридоров, лестниц и т. д.) существуют прямые нормативы, задающие мощность ламп для каждого такого помещения.

Рассмотрим методику проведения расчетов по каждому из описанных методов.



Метод коэффициента использования светового потока

В результате решения по методу коэффициента использования светового потока находится световой поток лампы, по которому она подбирается из числа стандартных. Поток выбранной лампы не должен отличаться от расчетного более чем на +20 или -10%. При большем расхождении корректируется намеченное число светильников.

Расчетное уравнение для определения необходимого светового потока одной лампы:

F= (Емин х S х kз хz) / (n х η)

Где F - световой поток лампы (или ламп) в светильнике, лм; Емин - нормируемая освещенность, лк, kз - коэффициент запаса (зависит от типа ламп и степени загрязненности помещения), z - поправочный коэффициент, учитывающий, что средняя освещенность в помещении больше, чем нормируемая, минимальная, n - число светильников (ламп), η - коэффициент использования светового потока, равный отношению светового потока, падающего на рабочую поверхность, к суммарному потоку всех ламп; S — площадь помещения, м2.

Коэффициент использования светового потока - справочное значение, зависит от типа светильника, параметров помещения (длины, ширины и высоты), коэффициентов отражения потолков, стен и полов помещения.

Порядок расчета освещения по методу коэффициента использования светового потока:

1) определяется расчетная высота Нр, тип и количество светильников в помещении.

Расчетная высота подвеса светильника определяется исходя из геометрических размеров помещения

Hр =H - hc - hр, м,

где Н - высота помещения, м, hc – расстояние светильника от перекрытия ("свес" светильника, принимается в пределах от 0, при установке светильников на потолке, до 1,5 м), м, hр – высота рабочей поверхности над полом (обычно hр = 0,8м).



Рис. 1. Определение расчетной высоты при расчетах электрического освещения

Подробнее про определение расчетной высоты смотрите здесь: Размещение светильников в помещении при расчете освещения

2) по таблицам находятся: коэффициент запаса kз поправочный коэффициент z, нормированная освещенность Емин,

3) определяется индекс помещения i (он учитывает зависимость коэффициента использования светового потока от параметров помещения):

i = (A х B) / (Нр х (A + B),

где А и В - ширина и длина помещения, м,

4) коэффициент использования светового потока ламп η в зависимости от типа светильника, коэффициентов отражения стен, потолка и рабочей поверхности ρс, ρп, ρр;

5) находится по формуле необходимый поток одной лампы F;

6) выбирается стандартная лампа с близким по величине световым потоком.

Если в результате расчета окажется, что лампа больше по мощности, чем применяемые в выбранном светильнике, или если требуемый поток больше, чем могут дать стандартные лампы, следует увеличить количество светильников и повторить расчет или отыскать необходимое количество ламп, задавшись их мощностью (а следовательно и световым потоком лампы F):

n = (Емин х S х kз хz) / (F х η)

Метод удельной мощности

Удельной установленной мощностью называют частное от деления общей установленной в помещении мощности ламп на площадь помещения:

pуд = (Pл х n) / S

где pуд - удельная установленная мощность, Вт/м2, Pл - мощность лампы, Вт; n- число ламп в помещении; S — площадь помещения, м2.

Удельная мощность — это справочное значение. Для того, что бы правильно выбрать величину удельной мощности необходимо знать тип светильников, нормированную освещенность, коэффициент запаса (при его значениях, отличающихся от указанных в таблицах, допускается пропорциональный пересчет значений удельной мощности), коэффициенты отражения поверхностей помещения, значения расчетной высоты и площадь помещения.

Расчетное уравнение для определения мощноcти одной лампы:

Pл = (pуд х S) / n

Порядок расчета освещения по методу удельной мощности:

1) определяется расчетная высота Нр, тип и количество светильников и в помещении;

2) по таблицам находятся нормированная освещенность для данного вида помещений Емин, удельная мощность pуд;

3) рассчитывается мощность одной лампы и подбирается стандартная.

Если расчетная мощность лампы оказывается большей чем при меняемая в принятых светильниках, следует определить необходимое количество светильников, приняв величину мощности лампы в светильнике Рл.

Точечный метод расчета освещения

Этим методом находятся освещенность в любой точке помещения.

Порядок расчета для точечных источников света:

1) Определяется расчетная высота Hр, тип и размещение светильников в помещении и чертится в масштабе план помещения со светильниками,

2) на план наносится контрольная точка А и находятся расстояния от проекций светильников до контрольной точки - d;



Рис. 2. Расположение контрольной точки А при размещении светильников по углам квадрата и В по сторонам прямоугольника

3) по пространственным изолюксам горизонтальной освещенности находится освещенность е от каждого светильника;

4) находится общая условная освещенность от всех светильников ∑е;

5) рассчитывается горизонтальная освещенность от всех светильников в точке А:

Еа = (F х μ / 1000х kз) х ∑е,

где μ - коэффициент, учитывающий дополнительную освещенность от удаленных светильников и отраженного светового потока, kз - коэффициент запаса.

Вместо пространственных изолюкс условной горизонтальной освещенности возможно использование таблиц значений горизонтальной освещенности при условной дампе 1000 лм.

Порядок по точечному методу расчета для светящихся полос:

1) определяется расчетная высота Hр, тип светильников и люминесцентных ламп в них, размещение светильников в полосе и полос в помещении. Затем полосы наносятся на план помещения, вычерченный в масштабе;

2) на план наносится контрольная точка А и находятся расстояния от точки А до проекции полос р. По плану помещения находится длина половины полосы, которую принято в точечном методе обозначать L. Ее не следует путать с расстоянием между полосами, обозначенным также L и определяемым по выгоднейшему соотношению (L/Нр);



Рис. 3. Схема к расчету освещения точечным методом полосами светильников

3) определяется линейная плотность светового потока

F' = (Fсв х n) / 2L,

где Fсв - световой ноток светильника, равный сумме световых потоков ламп, светильника; n- количество светильников в полосе;

4) находятся приведенные размеры p' = p/Нр, L' = L/Нр

5) по графикам линейных изолюксов относительной освещенности для люминесцентных светильников (светящихся полос) находится для каждой полу полосы в зависимости от типа светильника р' и L'

Еа = (F' х μ / 1000х kз) х ∑е
Виды ламп и освещения

Развитие технологий привело к созданию большого количества искусственных источников света. Разные виды лампочек подходят для разных задач и помещений. Лучше разбираться в этом вопросе поможет наша статья.

Характеристики

Лампы различаются друг от друга конструкцией и техническими характеристиками. Для потребителя важно знать свойства тех или иных источников света. Ознакомимся с ними подробнее.

Мощность. Измеряется в Вт. Мощность говорит о количестве электричества, которое потребляет источник света. Чем она больше, тем ярче светит лампочка. Одновременно большая мощность говорит о больших расходах на электроэнергию и размере счетов за нее.

Поскольку номинальная мощность напрямую зависит от конструкции, то для сравнения разных типов ламп удобнее использовать другую характеристику – световой поток.

Световой поток. Измеряется в лм. Световой поток показывает, насколько ярко светит лампочка. Новые модели источников света (люминесцентные и светодиодные) имеют большую яркость при меньшей мощности. Именно за счет этого достигается энергосбережение.

Сравнительная характеристика мощностей самых популярных бытовых лампочек со световым потоком 1200 лм приведена в таблице.



Таким образом, при равном световом потоке мощность светодиодных ламп более чем в пять раз меньше, чем у ламп накаливания.

Светоотдача. Измеряется в лм/Вт. Светоотдача показывает световой поток в расчете на 1 Вт мощности. Также удобный параметр для сравнения разных типов осветительных приборов. Чем больше светоотдача, тем меньшая мощность обеспечивает максимальную яркость.



Коэффициент цветопередачи (Ra, CPI). Показывает, насколько искажаются реальные цвета при искусственном освещении. Обозначается цифрами от 1 до 100. Чем ниже значение коэффициента, тем сильнее искажаются оттенки. Индекс 100 означает, что цвета передаются максимально точно. Для зрения в помещении безопаснее использовать источники света с Ra не менее 80.

Цветовая температура. Измеряется в К. Определяет теплоту света, ведь разные цвета в зависимости от освещения воспринимаются глазом по-разному.

Цветовая температура

Различают несколько типов цветовых температур:

  • 2700-3200 – теплый белый;

  • 3300-4000 – нейтральный белый;

  • 4000-5000 – холодный белый;

  • 5000-6000 – дневной свет;

  • свыше 6000 – холодный дневной.

Цветовая температура заметно влияет на настроение и работоспособность человека. При выборе ламп, особенно для домашнего и рабочего использования, внимательно изучите маркировку. Помните, что теплый цвет способствуют расслаблению, а холодные – бодрости и работоспособности. Но в больших количествах холодный свет угнетает нервную и зрительную систему. Подробнее можно почитать в статье о цветовой температуре

Срок службы. Это количество часов, которое прослужит источник света. На упаковке обычно указывается срок службы при работе в идеальных условиях. В реальных он может отличаться от заявляемого производителем. Сроки службы популярных бытовых лампочек приведены в таблице.



К тому же у многих моделей источников света со временем падает яркость. Это происходит из-за физических процессов, которые делают возможным само свечение. К таким лампам относятся светодиодные, газоразрядные.

Угол рассеивания света. Это угол, на который расходится световой поток. Лампа накаливания светит во все стороны на 360⁰. Но не все виды источников света могут похвастаться тем же. Например, из-за конструктивных особенностей led (и других типов) угол рассеивания составляет от 30⁰ до 360⁰.

Исходя из задачи светильника, выбирается оптимальный угол. Для точечной подсветки достаточно 30⁰, а для общего освещения лучше выбирать максимальный угол.

Коэффициент пульсации (мерцания). Характеризует равномерность освещения. Измеряется в процентах. Чем меньше коэффициент, тем ровнее световой поток, тем меньше будут уставать глаза. В идеале для дома и офиса стоит выбирать источники света с коэффициентом пульсации около 5%. Лампы с коэффициентом свыше 35% опасны для зрения.

Классификация

Лампы накаливания

Самый первый искусственный источник света, придуманный Т.Эдисоном в конце 19 века. Свечение основано на прохождении тока через вольфрамовую нить накаливания. Нить накаляется до 3000⁰С и начинает светиться. Вольфрамовая спираль помещается в стеклянную колбу, которая заполнена либо инертными газами, либо вакуумом.

Несмотря на простую конструкцию лампы накаливания различаются по форме, размерам и назначению. Могут работать от разных напряжений: 220, 12, 24 и 36 В. Светят они теплым светом 2700 К, цветопередача высокая – свыше 90. Выпускаются разной мощности, стоят мало. К тому же они не зависят от перепадов напряжения в сети, работают при минусовых температурах, не требуют особой утилизации.

К недостаткам можно отнести минимальную светоотдачу, высокое энергопотребление, низкий срок службы, хрупкость, сильное нагревание при работе.

Современным подвидом стали модные винтажные лампы Эдисона. Конструктивно они изготавливаются так же, как лампы накаливания, но в самых причудливых формах, цветах и вариациях. Винтажные источники света используются для декорирования интерьеров под старину и в стиле «лофт».

Галогенные

Модернизированная версия лампы накаливания. Главное усовершенствование состоит в добавке галогенов (смеси паров брома и йода) к инертному газу в колбу. Это приводит к тому, что ионы вольфрама в колбе ионизируются и вступают в реакцию с парами галогенов. Получившаяся молекула оседает на нагретую спирать и разлагается. В итоге вольфрам снова переходит в металлическую фазу. Весь процесс способствует увеличению срока службы и светоотдачи, снижению размеров колбы. Уменьшение габаритных размеров стало возможным благодаря особому кварцевому стеклу, которое используется для колбы. Кварцевое стекло выдерживает более высокие температуры, чем обычное.

«Галогенки» находят свое применение во многих сферах: уличное освещение, общее и точечная подсветка в квартирах, прожекторы, низковольтное освещение, автомобильные фары и др. Они обладают всеми достоинствами ламп накаливания и повышенной светоотдачей, сроком службы. 

Из минусов отмечается, что при работе колба сильно нагревается. Нельзя трогать лампу голыми руками: на ней останется жир от пальцев, который в итоге приведет к скорой поломке. Также «галогенки» чувствительны к перепадам напряжения в сети.

Подробнее читайте в статье про галогенные лампы

Газоразрядные источники света (ГРЛ)

Принцип действия газоразрядных ламп основан на явлении электрического разряда в газах. Появление светового излучения у ГРЛ разных типов несколько различается физически. А в конструкции немало общего.



Общее устройство ГРЛ

Их общая конструкция состоит из разрядной трубки (или горелки), к которой припаяны электроды (основные и поджигающие). Горелка изготавливается из специального кварцевого или керамического тугоплавкого стекла. Трубка и электроды помещены во внешнюю колбу.  Внутрь колбы закачиваются разные газы в зависимости от типа источника света.

В устройство дуговых ламп входит токоограничивающий резистор, который необходим для контроля над возникающим в колбе разрядом. Вместо резистора могут применяться внешние балласты (дроссели): электромагнитные или электронные. Также для стабильной работы в схему включается пускорегулирующая аппаратура, а для первоначального розжига – импульсное зажигающее устройство.

ГРЛ применяют в уличном, бытовом, промышленном, автомобильном, кино- и театральном освещении, сельском хозяйстве.

В соответствии с Минаматской конвекцией с 2020 года запрещается производство некоторых ртутьсодержащих изделий: в том числе ДРЛ, МГЛ.

Характеристики некоторых ГРЛ приведены в таблице.



ДРЛ

Дуговые ртутные лампы. Излучение возникает благодаря столбу дугового электрического разряда. Пары ртути светят видимым голубым или фиолетовым спектром и невидимым глазу ультрафиолетом. Последний возбуждает люминофор, нанесенный на внутреннюю часть колбы. В итоге получается яркий белый свет.

ЛЛ и КЛЛ

Люминесцентные и компактные люминесцентные лампы. Свечение основано на дуговом разряде, который возникает между электродами в атмосфере инертных газов и паров ртути. В итоге возникает невидимое глазу ультрафиолетовое излучение. В видимый спектр свет переводит слой люминофора, нанесенный внутри колбы. Он поглощает ультрафиолет и излучает видимый свет. В зависимости от люминофора возможны разные цветовые температуры.

ЛЛ чаще применяются для освещения промышленных предприятий, цехов и офисов. КЛЛ – для бытового и промышленного освещения. Компактные лампы отличаются свернутой в спираль формой стеклянной колбы. Это сделано для минимизирования размеров лампы. Необходимая пускорегулирующая аппаратуры КЛЛ «спрятана» в цоколь.

Характерным преимуществом ЛЛ является низкое нагревание колбы, а недостатком – плохая работа при низких температурах (ниже +5⁰С).

ДНаТ

Натриевые (ДНаТ). Излучение происходит благодаря газовому разряду в парах натрия. Свет получается оранжево-желтый. Поэтому применяются ДНаТ в основном для уличного освещения и в теплицах. Также ДНаТ характеризуются высокой светоотдачей (150-200 лм/Вт) и долгим сроком службы.

МГЛ

Металлогалогенные лампы. Свечение основано на плазме дугового разряда высокого давления в парах инертных газов, ртути и галогенидов натрия и скандия. В зависимости от количества галогенидов спектр МГЛ свет получается разного спектра (от 3500 до 6000 К). 

МГЛ характеризуются высокой светоотдачей (70-95 лм/Вт) и цветопередачей (Ra более 90).

Ксеноновые

Свечение возникает за счет электрической дуги в атмосфере ксенона. Спектр приближен к естественному солнечному (примерно 4000 К). При добавлении к ксенону некоторый добавок получают другие цветовые температуры: 5000 и 6000 К. Ксеноновые лампы применяют для фар автомобилей, кино- и фотосъемке (благодаря высокой цветопередаче), в оптических приборах, научных испытательных камерах и установках.

Неоновые

Относятся к газосветным лампам. Световое излучение возникает благодаря свечению самого газа при протекании электричества. Конструкция газосветных ламп проще, чем у газоразрядных: только трубка с инертным газом и два электрода с торцов трубки.

В зависимости от вида инертного газа неоновые лампы получают разное свечение.



Газосветные лампы

Разные оттенки получают смешением газов (иногда добавляют зелено-голубые пары ртути) либо нанесением люминофора на колбу.

Применяются в основном в декоративных целях и в наружной рекламе.

Светодиодные (led)

Излучение в светодиодных лампах основано на явлении рекомбинации в двух разных полупроводниках. В составе первого преобладают электроны, в составе второго – положительно заряженные ионы. Когда между проводниками протекает ток, то на границе материалов электроны и дырки рекомбинируют друг с другом. В итоге появляется световое излучение. В зависимости от материалов полупроводников различается длина волны света и его цветовая температура.



Конструкция led

Светодиодная лампа состоит из светодиодов, радиатора, драйвера, рассеивателя и цоколя. Радиатор отводит излишнее тепло от светодиодов. Драйвер выравнивает питающее напряжение, преобразует переменный ток в постоянный. В недорогих лампочках драйвер заменяют блоком питания, который не стабилизирует ток. Рассеиватель есть не во всех моделях. Он распределяет световой поток в пространстве, предотвращает попадание внутрь влаги и пыли. Иногда внутри рассеиватель покрывают люминофором.

К положительным сторонам светодиодных источников света относят:

  • энергосбережение;

  • длительный срок службы;

  • отсутствие сильного нагрева во время работы;

  • большой диапазон цветовых температур: от 2700 до 6500 К;

  • механическая прочность; возможность работы с поврежденным рассеивателем;

  • декоративность;

  • экологичность.

К отрицательным сторонам относят:

  • высокая цена;

  • мерцание (особенно у дешевых моделей без драйвера);

  • снижение яркости в течение эксплуатации из-за деградации светодиодов;

  • высокий процент брака;

  • световой поток узконаправленный.

Светодиодные источники света применяются практически везде: бытовое (общее и точечное) освещение, уличное, декоративное.

Работают от переменного (220) и постоянного напряжения (4, 12 В). Выпускаются с разными цоколями: штырьковыми и винтовыми.

Филаментные

Разновидность led, по внешнему виду схожая с лампами накаливания.

Предназначены для декоративного использования в открытых светильниках и люстрах. Нить накала заменяется светодиодной нитью. Нить изготовлена из стекла (сапфира), на которое нанесены 28 светодиодов (синих или в смеси с красными). Поверх нить покрывается слоем люминофора для создания белого света (до 4500 К). Драйвер в данном случае размещается в цоколе.

Филаментные источники света выпускаются небольшой мощности: от 4 до 8 Вт. Как правило, одна нить соответствует 1 Вт.

Типа «кукуруза»

«Кукурузой» называют светодиодную лампу, на которой светодиоды расположены по кругу. Светит она во все стороны на 360⁰. Часто «кукуруза» не имеет рассеивателя.

Светят такие лампы ярко, во все стороны. Применяются там, где необходимо яркое, экономное освещение. Лучше использовать в закрытых помещениях, так как рассеиватель отсутствует. Но выпускаются «кукурузы» и для уличного применения для замены газоразрядных ламп.

Энергосберегающие лампы. К ним относят источники света, которые при равном с лампой накаливания световом потоке имеют меньшую мощность. Для бытового применения энергосберегающими можно назвать компактные люминесцентные и светодиодные лампы.

Для сравнения можно взять разные типы ламп освещения с равным световым потоком 1200 лм.



Из таблицы видно, что мощность КЛЛ и led значительно меньше, чем у ламп накаливания. Правда, стоят энергосберегающие лампы значительно дороже. Тем не менее, уже через 1-1,5 года эксплуатации достигается экономия на счетах за электричество. Особенно, если заменять мощные лампы накаливания (свыше 60 Вт), и заменять в тех помещениях, где свет горит постоянно. В подвале энергосберегающая лампа себя не окупит.

Инфракрасные лампы

Это скорее источник тепла, чем света. Их конструкция основана на лампе накаливания. Только спираль не накаливается до температуры видимого света. Излучение идет в невидимом глазу инфракрасном диапазоне. Поэтому лампа больше излучает тепло.

Лампы бывают со стеклянной и керамической колбой. Применяются для обогрева помещений, теплиц, террариумов, аквариумов, в медицине. Особенностью обогрева является то, что греется не воздух, а сам объект (человек или цыпленок). Поэтому такие лампы подходят для обогрева открытых площадок.

Керосиновые лампы

Источник света, на основе сгорания керосина. В емкость заливается керосин. Через фитиль он поднимается в зону горения, где сгорает, давая свет. В другой конструкции, близкой к примусу, вместо фитиля используется трубочка под давлением, которое создает ручная помпа.

Применялись до широкого распространения электричества в 19-нач.20 веков. На сегодняшний день используются там, где нет электричества, туристами, в декоративных целях.

Кварцевые лампы

Представляют собой газоразрядную лампу низкого стекла с колбой из кварцевого стекла. Внутри находится смесь инертного газа и ртути. Пары ртути при прохождении электрического разряда дают ультрафиолетовое излучение. Кварцевое стекло их пропускает наружу.

Благодаря ультрафиолету определенной длины волны происходит обезвреживание вирусов и бактерий. Поэтому кварцевые лампы активно используются для обеззараживания помещений, инструментов, воды. Также их используют для облучения молодняка на птицефермах и детей для предотвращения рахита.

К разновидностям кварцевых ламп относятся ультрафиолетовые и бактерицидные. Они немного отличаются конструкцией, назначением и условиями эксплуатации.

Выбор подходящего источника света

При выборе ламп для освещения ориентируйтесь на условия эксплуатации, площадь и назначение помещения (или открытой площадки).

Газоразрядные лампы не используются для домашнего освещения. Они постепенно отмирают из-за наличия ртути в составе. Натриевые лампы для уличного освещения часто заменяют светодиодными.

Для бытового освещения больше всего подходят лампы накаливания, галогенные, люминесцентные и светодиодные. Для освещения помещений, где свет горит редко и помалу вполне можно использовать лампы накаливания. Также они незаменимы при освещении парилок (Led и КЛЛ в них не выдержат высоких температур). Для парилки подойдет и «галогенка».

Светодиодные источники света подойдут для постоянно освещаемых помещений. При этом обращайте внимание на цветовую температуру: для комнат отдыха – теплые тона, для рабочих помещений – нейтральные или холодные.

КЛЛ не стоит использовать на жаре и при температурах ниже 5⁰С.

Для декоративного освещения и рекламы подойдут светодиодные ленты, гибкий неон.

Точечную подсветку легко организовать при помощи спотов с «галогенками» или led.

При освещении сырых помещений (погреб, подвал) лучше использовать низковольтное освещение.
СВЕТ

Свет - электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра.

В быту свет не принято воспринимать как излучение. Тем не менее именно нагретые или по-иному возбужденные состояния окружающих нас предметов и позволяют видеть их человеческому глазу. Еще из школьного курса физики известно, что природа света двояка. С одной стороны он -- электромагнитная волна, с другой -- поток частиц фотонов, в этом и состоит корпускулярно-волновой дуализм, говоря по-научному. В практике пожаротушения наибольший интерес вызывают особенности света именно волновой природы.

Свет может распространяться там, где звук уже не существует (если смотреть через прозрачный колпак, из-под которого выкачали воздух, то видно, как бьётся молоточек колокольчика под колпаком, а звука не слышно). Значит, световые колебания распространяются в особой среде, эту среду Гюйгенс назвал эфиром (современная наука отрицает существование эфира).

Физические величины, связанные со светом: яркость, освещённость, световой поток, световая отдача.

В физике свет изучается в разделе «Оптика».

2. ОПТИКА

Оптика (от др.-греч. Οπτικη
  1   2   3


написать администратору сайта