ГЛАВА 20 Качество ПО
463
Табл. 20-2. Эффективность нахождения дефектов
при использовании разных методик
Методика
Минимальная
Типичная
Максимальная
устранения дефектов
эффективность
эффективность
эффективность
Неформальные
25%
35%
40%
обзоры проекта
Формальные
45%
55%
65%
инспекции проекта
Неформальные
20%
25%
35%
обзоры кода
Формальные
45%
60%
70%
инспекции кода
Моделирование
35%
65%
80%
или прототипирование
Самостоятельная
20%
40%
60%
проверка кода
Блочное тестирование
15%
30%
50%
Тестирование новых
20%
30%
35%
функций (компонентов)
Интеграционное
25%
35%
40%
тестирование
Регрессивное
15%
25%
30%
тестирование
Тестирование системы
25%
40%
55%
Ограниченное бета-тес- 25%
35%
40%
тирование (менее чем в 10 организациях)
Крупномасштабное бета- 60%
75%
85%
тестирование (более чем в 1000 организаций)
Источники: «Programming Productivity» (Jones, 1986a), «Software Defect-Removal
Efficiency» (Jones, 1996) и «What We Have Learned About Fighting Defects» (Shull et al., 2002).
Самое интересное в этих данных то, что типичная эффективность об- наружения дефектов при использовании любой методики не превышает
75% и что в среднем она равна примерно 40%. Более того, самые попу- лярные методики — блочное тестирование и интеграционное тестирование — по- зволяют найти обычно только около 30–35% дефектов. Как правило, использует- ся подход, основанный на интенсивном тестировании, что позволяет устранить лишь около 85% дефектов. Ведущие организации используют более широкий ди- апазон методик, достигая при этом 95%-ой или более высокой эффективности ус- транения дефектов (Jones, 2000).
Итак, если разработчики хотят достигнуть более высокой эффективности обна- ружения дефектов, они должны полагаться на комбинацию методик. Одно из подтверждений этого вывода было получено в классическом исследовании Глен- форда Майерса (Myers, 1978b). Участниками исследования были программисты,
обладавшие минимум 7-, а в среднем — 11-летним опытом. Исследуемая программа
464
ЧАСТЬ V Усовершенствование кода содержала 15 известных ошибок. Майерс попросил каждого программиста най- ти эти ошибки, используя одну из следующих методик:
쐽
тестирование выполнения программы по спецификации;
쐽
тестирование выполнения программы по спецификации с возможностью изу- чения исходного кода;
쐽
анализ/инспекция с использованием и спецификации, и исходного кода.
Различия эффективности обнаружения дефектов оказались очень боль- шими: программисты нашли от 1 до 9 дефектов. Средний показатель был равен 5,1, или 1/3 от общего числа известных дефектов.
При использовании одной методики никакая из них не имела статистически зна- чимого преимущества над любой другой. В то же время любая комбинация двух методик — в том числе использование одной методики двумя независимыми груп- пами — приводила к увеличению общего числа найденных дефектов почти вдвое.
В исследованиях, проведенных в Лаборатории проектирования ПО NASA, компа- нии Boeing и других компаниях, было обнаружено, что разные программисты находят разные дефекты. Только примерно каждую пятую ошибку, обнаруженную в ходе инспекций, находят двое или более разработчиков (Kouchakdjian, Green,
and Basili, 1989; Tripp, Struck, and Pflug, 1991; Schneider, Martin, and Tsai, 1992).
Майерс обращает внимание на то, что поиск одних видов ошибок оказывается более эффективным при непосредственном участии людей (например, при инспекции или анализе кода), а других видов — при компьютерном тестировании (Myers, 1979).
Этот вывод подтвердился в более позднем исследовании, показавшем, что чтение кода
способствует нахождению дефектов интерфейса, а функциональное тести- рование — нахождению дефектов управляющих структур (Basili, Selby, and Hutchens,
1986). Гуру тестирования Борис Бейзер (Boris Beizer) сообщает, что неформаль- ные подходы к тестированию обычно позволяют достигнуть покрытия кода тес- тами лишь на 50–60%, если только вы не используете анализатор покрытия
(Johnson, 1994).
Таким образом, методики поиска дефектов лучше применять в комбина- ции. Джонс (Jones) также подтверждает этот вывод. Используя исключи- тельно тестирование, высоких результатов добиться невозможно. Джонс сообщает, что комбинация блочного тестирования, функционального тестирования и тестирования системы часто приводит к обнаружению менее 60% дефектов, что обычно неприемлемо для конечного продукта.
Эти данные также помогают понять, почему программисты, начинающие приме- нять дисциплинированную методику устранения дефектов, такую как экстремаль- ное программирование, добиваются более высокой степени устранения дефектов.
Как показывает табл. 20-3, набор методик устранения дефектов, применяемых в экстремальном программировании, позволяет устранить около 90% дефектов в обычной ситуации и 97% в лучшем случае, что гораздо выше среднего для отрас- ли показателя, равного 85%. Некоторые программисты связывают этот факт с синергичными отношениями между методиками экстремального программиро- вания, но на самом деле это просто предсказуемый результат использования кон- кретного набора методик устранения дефектов. Эффективность других комбинаций методик может оказаться такой же или даже более высокой, поэтому выбор кон-
ГЛАВА 20 Качество ПО
465
кретных методик устранения дефектов, позволяющих достичь желаемого уровня качества, является одним из аспектов эффективного планирования проекта.
Табл. 20-3. Эффективность обнаружения дефектов, характернаядля экстремального программированияМетодика устраненияМинимальнаяТипичнаяМаксимальнаядефектовэффективностьэффективностьэффективностьНеформальные обзоры
25%
35%
40%
проекта (парное программи- рование)
Неформальные обзоры кода
20%
25%
35%
(парное программирование)
Самостоятельная
20%
40%
60%
проверка кода
Блочное тестирование
15%
30%
50%
Интеграционное
25%
35%
40%
тестирование
Регрессивное тестирование
15%
25%
30%
Общая эффективность
74%
90%
97%
устранения дефектов
Стоимость нахождения дефектовНекоторые методики обнаружения дефектов дороже других. Наиболее экономич- ные при прочих равных условиях имеют наименьшую стоимость в расчете на один обнаруженный дефект.
Равенством прочих условий пренебрегать нельзя, поскольку стоимость методики в расчете на один дефект зависит от общего числа обнару- женных дефектов, этапа обнаружения каждого дефекта и других факторов, не связанных с экономическими аспектами конкретной методики.
Как правило, эксперименты показывают, что инспекции обходятся дешев- ле, чем тестирование. В исследовании, проведенном в Лаборатории про- ектирования ПО, было обнаружено, что при чтении кода число дефек- тов, находимых в час, было примерно на 80% более высоким, чем при тестирова- нии (Basili and Selby, 1987). В другой организации поиск дефектов проектирова- ния с использованием блочного тестирования был вшестеро дороже, чем при ис- пользовании инспекций (Ackerman, Buchwald, and Lewski, 1989). Более позднее ис- следование, проведенное в IBM, показало, что на обнаружение каждой ошибки раз- работчики тратили 3,5 человеко-часа в случае инспекций кода и 15–25 в случае тестирования (Kaplan, 1995).
Стоимость исправления дефектовСтоимость нахождения дефектов — только одна часть уравнения. Другой частью является стоимость их исправления. На первый взгляд, методика обнаружения дефектов не играет роли: стоимость их исправления всегда будет одинаковой.
Это неверно, потому что чем дольше дефект остается в системе, тем больше средств придется потратить на его устранение. Следовательно, методика, способствующая раннему обнаружению ошибок, снижает стоимость их исправления. Еще важнее
466
ЧАСТЬ V Усовершенствование кода то, что одни методики — такие как инспекции — позволя- ют определить и симптомы, и причины дефектов за один этап; другие — например, тестирование — указывают на симптомы дефекта, но требуют выполнения дополнитель- ной работы для диагностики и устранения его причины. В
итоге одноэтапные методики оказываются гораздо более дешевыми, чем двухэтапные.
В одном из подразделений Microsoft обнаружили, что при использова- нии инспекции кода — одноэтапной методики — на нахождение и ис- правление дефекта уходит 3 часа, тогда как при использовании тестиро- вания — двухэтапной методики — на это требуется 12 часов (Moore, 1992). Кол- лофелло и Вудфилд сообщили, что при разработке программы из 700 000 строк,
над которой работало более 400 программистов, обзоры кода имели гораздо бо- лее высокую экономическую эффективность, чем тестирование: прибыль на ин- вестированный капитал была равной 1,38 и 0,17 соответственно (Collofello and
Woodfield, 1989).
Суть сказанного в том, что эффективная программа контроля качества должна включать комбинацию методик, применяемых на всех стадиях разработки. Для достижения высокого качества ПО можно использовать следующую комбинацию:
쐽
формальные
инспекции всех требований, всех аспектов архитектуры и всех проектов критических частей системы;
쐽
моделирование или прототипирование;
쐽
чтение или инспекции кода;
쐽
тестирование выполнения программы.
20.4. Когда выполнять контроль качества ПО?Как было отмечено в главе 3, чем раньше ошибка внедряет- ся в приложение, тем сильнее она переплетается с другими частями приложения и тем больше средств придется потра- тить на ее устранение. Дефект в требованиях может вылить- ся в один или несколько дефектов в проекте, которые могут привести к появлению множества дефектов в коде. Ошибка в требованиях может привести к разработке дополнительных компонентов архитектуры или подтолкнуть к неудачным ар- хитектурным решениям. Дополнительные архитектурные компоненты требуют написания дополнительного кода, те- стов и документации. С другой стороны, ошибка в требованиях может привести к выбрасыванию частей архитектуры, кода и тестов. Если идея устранения ошибок из чертежей дома перед заливкой фундамента бетоном кажется вам разумной, то вы согласитесь и с тем, что дефекты требований и архитектуры также следует уст- ранять до того, как они повлияют на более поздние этапы разработки.
Кроме того, ошибки в требованиях или архитектуре обычно имеют более широ- кие следствия, чем ошибки конструирования. Одна ошибка в архитектуре может затронуть несколько классов и десятки методов, тогда как одна ошибка констру-
Перекрестная ссылка О зависи- мости стоимости исправления дефектов от срока их присут- ствия в системе см. раздел «Об- ращение к данным» раздела 3.1.
Сами ошибки более подробно обсуждаются в разделе 22.4.
Перекрестная ссылка Контроль качества предварительных дей- ствий — например, определения требований и разработки архи- тектуры — в этой книге не рас- сматривается. Информацию по этим темам можно найти в кни- гах, указанных в разделе «До- полнительные ресурсы» в кон- це этой главы.
ГЛАВА 20 Качество ПО
467
ирования скорее всего повлияет только на один метод или класс. Это еще одно убедительное обоснование как можно более раннего нахождения ошибок.
Дефекты проникают в ПО на всех стадиях разработки, поэтому контро- лю качества следует уделять должное внимание на всех этапах проекта,
начиная с самых ранних. Контроль качества нужно внести в планы в начале работы над программой; его следует выполнять по мере прогресса; нако- нец, он должен подчеркивать удачное завершение работы над проектом.
20.5. Главный Закон Контроля Качества ПОНи в одном ресторане посетителей не кормят бесплатно, и даже если б кормили, никто не смог бы поручиться за качество блюд. Однако разра- ботка ПО —
совсем не кулинарное искусство, и качество ПО имеет одну важную необычную особенность. Главный Закон Контроля Качества ПО заключа- ется в том, что повышение качества системы снижает расходы на ее разработку.
В основе этого закона лежит одно важное наблюдение: лучшим способом повы- шения производительности труда программистов и качества ПО является мини- мизация времени, затрачиваемого на исправление кода, чем бы оно ни объясня- лось: изменениями требований, изменениями проекта или отладкой. Средняя для отрасли производительность труда программистов эквивалентна примерно 10–
50 строкам кода на одного человека в день (с учетом всех затрат, не связанных с кодированием). Написание 10–50 строк кода требует нескольких минут, — на что же уходит остальное время?
Такая, казалось бы, низкая производительность труда час- тично объясняется тем, что в подобных средних показате- лях учитывается время, не связанное непосредственно с программированием. Время тестировщиков, руководителей,
секретарей — все эти факторы включены в данный показа- тель. Определение требований, разработка архитектуры и другие действия, не относящиеся к кодированию, также отра- жены в «строках кода в день». Однако основные временные затраты объясняются не этим.
Самый длительный этап в большинстве проектов — отладка и исправление не- правильного кода. При традиционном цикле разработки ПО эти действия зани- мают около 50% времени (см. раздел 3.1). Сокращение потребности в отладке,
достигаемое благодаря предотвращению ошибок, повышает производительность труда. Следовательно, наиболее очевидный метод сокращения графика разработ- ки — повышение качества ПО и снижение объема времени, уходящего на его отладку и исправление.
Этот анализ подтверждается реальными данными. В обзоре 50 проектов,
потребовавших более 400 человеколет и включивших почти 3 000 000
строк кода, проведенном в Лаборатории проектирования ПО NASA, было обнаружено, что повышенное внимание к контролю
качества позволяло снизить уровень ошибок, но не повышало общие расходы на разработку (Card, 1987).
Перекрестная ссылка О разли- чиях между написанием отдель- ной программы и созданием программного продукта см. под- раздел «Программы, продукты,
системы и системные продукты»
раздела 27.5.
468
ЧАСТЬ V Усовершенствование кода
В исследовании, проведенном в IBM, были получены аналогичные результаты:
Программным проектам с наименьшими уровнями дефектов соответствовали самые короткие графики разработки и максимальные показатели производитель- ности труда… устранение дефектов на самом деле — самый дорогой и длитель- ный этап разработки ПО (Jones, 2000).
Это верно и для противоположного края шкалы. В одном исследовании
1985 года ученые попросили 166 профессиональных программистов написать программы по одной и той же спецификации. Итоговые про- граммы содержали в среднем 220 строк, а на их написание ушло в среднем чуть меньше 5 часов. Результаты оказались поистине удивительными: программисты,
работавшие над своими программами средний объем времени, допустили наиболь- шее число ошибок. Программисты, которым потребовалось больше или меньше времени, допустили значительно меньше ошибок (DeMarco and Lister, 1985). Ре- зультаты показаны на рисунке 20-2.
Рис. 20-2. Ни при самом быстром, ни при самом медленном подходе к разработке
ПО не наблюдается наибольший уровень дефектов
В сравнении с самой быстрой группой двум самым медленным группам понадо- билось примерно в 5 раз больше времени для достижения результата с примерно тем же уровнем дефектов. Таким образом, на создание ПО без дефектов не всегда уходит больше времени, чем на написание ПО с дефектами.
Вероятно, в некоторых случаях контроль качества требует значительных затрат.
Если вы пишете приложение управления космическим кораблем или медицин- ской системой жизнеобеспечения, высокие требования к надежности ПО делают проект более дорогим.
В сравнении с традиционным циклом «кодирование — тестирование — отладка»
улучшенная программа контроля качества ПО оказывается более экономичной.
Она перенаправляет ресурсы от отладки и рефакторинга к предварительным этапам контроля качества. Предварительные этапы влияют на качество системы больше,
чем последующие, поэтому время, потраченное на предварительных этапах, по- зволяет сэкономить больше времени потом. Результатом является снижение уровня
ГЛАВА 20 Качество ПО
469
дефектов, сокращение сроков разработки и снижение затрат. В трех следующих главах вы найдете еще несколько примеров, иллюстрирующих Главный Закон
Контроля Качества ПО.
Контрольный список: план контроля качества Идентифицировали ли вы специфические характеристики качества, имеющие особую важность в вашем проекте?
Сообщили ли вы другим программистам целевые характеристики качества?
Провели ли вы различие между внешними и внутренними характеристика- ми качества?
Обдумали ли вы, как некоторые характеристики могут усиливать или ос- лаблять другие?
Призывает ли ваш проект к использованию нескольких методик обнаруже- ния ошибок, ориентированных на поиск разных видов ошибок?
Составили ли вы план контроля качества, охватывающий все этапы разра- ботки ПО?
Оцениваете ли вы
качество системы каким-нибудь образом, чтобы можно было определить, повышается оно или понижается?
Понимают ли руководители, что контроль качества требует дополнительных расходов в начале проекта, но зато позволяет добиться общей экономии средств?
Дополнительные ресурсыСоставить список книг для этой главы несложно, потому что методики повышения качества ПО и производительности труда описываются почти во всех трудах, посвященных эф- фективным методологиям разработки ПО. Сложность в том, чтобы выделить книги,
касающиеся непосредственно качества ПО. Ниже я указал две такие работы.
Ginac, Frank P.
Customer Oriented Software Quality Assurance. Englewood Cliffs, NJ: Prentice
Hall, 1998. В этой очень краткой книге описаны атрибуты качества, метрики каче- ства, программы контроля качества, роль тестирования в контроле качества, а так- же известные программы повышения качества, в том числе модель CMM, разрабо- танная в институте Software Engineering Institute, и стандарты ISO серии 9000.
Lewis, William E.
Software Testing and Continuous Quality Improvement, 2d ed. Auer- bach Publishing, 2000. В этой книге можно найти подробное обсуждение цикла контроля качества, а также методик тестирования. Кроме того, в ней вы найдете много контрольных форм и списков.
Соответствующие стандартыIEEE Std 730-2002 — стандарт IEEE планирования контроля качества ПО.
IEEE Std 1061-1998 — стандарт IEEE методологии метрик качества ПО.
IEEE Std 1028-1997 — стандарт обзоров ПО.
http://cc2e.com/2043
http://cc2e.com/2050
http://cc2e.com/2057
470
ЧАСТЬ V Усовершенствование кода
IEEE Std 1008-1987 (R1993) — стандарт блочного тестирования ПО.
IEEE Std 829-1998 — стандарт документирования тестов ПО.
Ключевые моменты쐽
Высокого качества можно достичь без дополнительных затрат, но для этого вы должны перераспределить ресурсы и предотвращать дефекты вместо того,
чтобы их исправлять.
쐽
Стремление к одним характеристикам качества препятствует достижению дру- гих. Четко определите цели, имеющие для вас первостепенную важность, и сообщите об этом всем членам группы.
쐽
Никакая методика обнаружения дефектов не является достаточно эффектив- ной. Тестирование само по себе — не самый лучший способ устранения оши- бок.
Составляя программу контроля качества, предусмотрите применение не- скольких методик, позволяющих обнаружить разные виды ошибок.
쐽
Существуют многие эффективные методики контроля качества, применяемые как во время конструирования, так и до его начала. Чем раньше вы обнаружи- те дефект, тем слабее он переплетется с остальным кодом и тем меньше вреда он успеет принести.
쐽
В мире программирования контроль качества ориентирован на процесс.
В отличие от промышленного производства разработка ПО не включает по- вторяющегося этапа, влияющего на конечный продукт, поэтому качество ре- зультата определяется процессом, используемым для разработки ПО.