Главная страница
Навигация по странице:

  • Всегда в первую очередь измеряйте напряжения питания!

  • Если выходное напряжение не близко к нулю , то все

  • Руководство по устранению неисправностей и ремонту. Руководство по устранению неисправностей и ремонту


    Скачать 416 Kb.
    НазваниеРуководство по устранению неисправностей и ремонту
    Дата16.11.2021
    Размер416 Kb.
    Формат файлаdoc
    Имя файлаРуководство по устранению неисправностей и ремонту.doc
    ТипРуководство
    #273370
    страница5 из 12
    1   2   3   4   5   6   7   8   9   ...   12

    5 Измерения напряжения


    Измерения напряжения должны выполняться с максимальной осторожностью. Простая и дешевая неисправность после простого промаха щупом может легко превратиться в сложную и дорогостоящую!

    В соответствии с общим характером этой статьи я не буду ссылаться на какие-либо конкретные напряжения (вернемся к этому немного позже), скорее дам обзор того, что именно нужно искать. На этом этапе ожидается хорошее понимание основ работы транзистора, в противном случае Вы не сможете понять, что же именно видите на Вашем мультиметре или осциллографе.

    Всегда в первую очередь измеряйте напряжения питания!

    Бесчисленные человеко-часы были потрачены впустую в попытках найти «причудливые» ошибки, когда все, что произошло — это то, что напряжение (-я) питания либо отсутствует (-ют), либо неверно (-ы). Это всегда должно быть самым первым измерением напряжения, которое нужно произвести!

    5.1 Общие принципы


    В наиболее общих терминах в любых биполярных транзисторах (полевые транзисторы с изолированным каналом — MOSFETs и полевые транзисторы с P-N переходом — FETs — это совершенно разные полупроводниковые приборы!) напряжение, измеренное между базой и эмиттером должно составлять около 600-700 мВ, а в линейных схемах (таких, как обычные усилители) напряжение той же полярности между эмиттером и коллектором будет несколько выше, чем между базой и эмиттером. Например, на транзисторе PNP с подключенным к эмиттеру красным щупом (положительной полярности), между базой и эмиттером будет около минус 650 мВ, а между эмиттером и коллектором — сколько угодно отрицательного, от нескольких вольт до нескольких десятков вольт.

    Осциллограф может практически не показывать напряжения переменного тока на базе, но большой сигнал переменного тока на коллекторе — обычно нормальная картина. Показания постоянного напряжения скажут Вам, правильно ли работает транзистор и, следовательно, способен ли он выполнять свою работу. Хотя напряжение между базой и эмиттером составляет 650 мВ, но полное напряжение питания на коллекторе не обязательно неверно — его правильность следует определить с учетом схемы.



    Рис. 1 Входной каскад усилителя

    5.2 Пример


    Предположим на мгновение, что входной каскад выполнен по обычной дифференциальной схеме на паре NPN транзисторов (Q1 и Q2, рис. 1). Эмиттеры соединены вместе, возможно, с сопротивлениями небольшого значениями последовательно с каждым из них в некоторых конструкциях. Напряжение на базах будет, вероятно, на несколько милливольт отрицательнее, а напряжение между базами и эмиттерами должно составлять около 650 мВ. В большинстве схем на коллекторах будет почти полное напряжение питания (хотя бывают и исключения). Если Вы увидите, что выходное напряжение «прилипло» к одному из напряжений питания, то это будет означать, что работа дифференциальной схемы нарушена и все напряжения неверны. Это может значить, что один из транзисторов данного каскада неисправен, хотя не исключено, что и нет!

    Здесь Вам следует сыграть в детектива, чтобы выяснить, почему выход прилип к питанию (исключив все предыдущие типы неисправностей — неправильные компоненты, плохие паяные соединения и т.д.).

    Следующим каскадом для тестирования является усилитель напряжения (Q5). Проверьте напряжение между базой и эмиттером и убедитесь, что оно составляет около 650 мВ. Если это так, то напряжение на коллекторе должно быть около нуля, но этого может и не быть. Вместо этого Вы можете обнаружить, что напряжение на коллекторе равно (или близкое к) одному из напряжений питания. Посмотрите на схему предыдущего примера — усилитель напряжения на транзисторе PNP проводимости и на его коллекторе присутствует полное положительное напряжение питания. Это значит, что транзистор полностью включен ... почему? И так ли это?

    Следующий шаг — посмотреть на источники тока (Q3 и Q4). Между эмиттером и базой каждого из них должно быть 650 мВ или около того и ток через каждый легко определяется. Измерьте напряжение на каждом эмиттерном резисторе — оно должно быть примерно ... 650 мВ (вы можете понять, почему это так? Ответ немного ниже — раздел 5.3). Ток равен V / R, поэтому, если номинал эмиттерного резистора составляет (к примеру) 100 Ом, то ток должен составлять 0,65 / 100 = 6,5 мА (достаточно близко).

    На коллекторе Q3 должно быть около минус 700 мВ, а Q4 — около 0 В. Если это так, то усилитель должен работать. Если предположить, что на коллекторе Q5, а также Q4 присутствует почти полное напряжение питания, тому есть одна из двух причин: либо Q5 пробит (или полностью открыт), либо нет коллекторного тока. Работа Q5 заключается в том, чтобы выходной сигнал имел плюсовое значение, когда он открыт и минусовое, когда закрыт. Однако, если с коллектора Q4 ток не поступает, то выходной сигнал будет оставаться близким к напряжению плюсового питания. Входной каскад попытается выключить Q5, но будет несбалансирован напряжением на входе обратной связи. Это приведет к неработоспособности каскада до тех пор, пока не будет обнаружена неисправность — это Ваша миссия, если Вы ее, конечно, решите взять на себя.

    Таким образом, на коллекторе Q5 присутствует полное положительное напряжение питания, с отклонением в ту или иную сторону на вольт или около того (на данном этапе неважно). Напряжение на коллекторе Q4 должно быть примерно таким же, а ток должен составлять около 6,5 мА. Но погодите! Если бы все работало так, как должно, усилитель был бы функционирующим, поэтому происходит что-то неладное — но мы это уже и так знали. Каково напряжение на коллекторе Q4? Является ли напряжение на резисторе эмиттера Q4 равным 0,65 В, как и должно было бы быть?

    Если напряжение на коллекторе Q4 приближается к отрицательному напряжению питания или напряжение на его эмиттере намного ниже 0,65 В, то это значит, что коллекторная цепь Q4 оборвана — такое не является обычным отказом для биполярного транзистора, поэтому вполне вероятно, что имеется плохое паяное соединение в цепи коллектора Q4 (или, возможно, трещина на печатной плате). Если напряжение коллектора близко к положительному источнику питания, то эмиттерный резистор мог бы быть оборван — возможно, из-за плохого паяного соединения, поскольку резисторы редко обрываются без большого количества дыма и обугливания. Внимательно проверьте его значение — не был ли по ошибке поставлен резистор на 100 кОм?



    Рис. 1A Пример усилителя (P101)
    На рисунке 1А показан пример, в данном случае на основе P101. Единственная разница между этим и любым другим усилителем — это выходные полевые МОП-транзисторы, но основные принципы работы идентичны. Вам нужен, в основном, мультиметр и закон Ома и совсем немного другого, чтобы проконтролировать и проверять напряжения и токи, которые должны существовать практически в любой конструкции усилителя, независимо от топологии.

    Давайте посмотрим на схему выше. Напряжения показаны для каждой существенной точки схемы и из этих напряжений мы можем рассчитать ток через резисторы и многие транзисторы. В качестве примера R5 составляет 47 кОм, а R6 — 560 Ом. Падение напряжения на R6 составляет 0,65 В, потому:

    • ток через R6 = V / R = 0,65 / 560 = 1,16 мА

    • ток через Q1 = ток R6 / 2 (ток через каждый из транзисторов должен составлять 1/2 суммарного тока) = 0,58 мА

    • ток через R5 = V / R5 = 56 / 47 кОм = 1,2 мА

    Почему я не вычитал 1,3 В из напряжения питания? Ошибка очевидна, но в данном случае важно понимать, что точное значение несущественно. Важно то, что напряжения, токи и сопротивления имеют смысл. Это применимо ко всем частям схемы и есть одна вещь, в которой Вы должны быть уверены:
    Если выходное напряжение не близко к нулю, то все другие напряжения, вероятно, будут неправильными!

    Если выходное напряжение близко к нулю, то усилитель должен работать, если есть питающие напряжения.
    По этой причине я вообще никогда не стремлюсь показывать напряжения в различных частях любой цепи, потому что напряжения будут корректными только в случае, если цепь работает правильно. Мне было бы глупо пытаться показывать значения напряжений для каждого сценария возможных сбоев и вся информация была бы абсолютно бесполезна.

    В большинстве случаев можно проанализировать схему и вычислить вероятные напряжения, которые должны появляться в разных точках. Они не должны быть точными, но они должны иметь смысл. Не имеет смысла, если напряжение между базой и эмиттером транзистора составляет 15 В — это сразу указывает на то, что транзистор не того типа проводимости, неправильно установлен или неисправен. Дважды проверьте техническое описание, затем замените его на новый правильного типа проводимости! Если Вы считаете, что транзистор установлен неправильно, то он, вероятно, уже повредился, как только было подано питание. Не используйте повторно поврежденные транзисторы — для них есть соответствующее место — мусорный ящик.

    Анализ схемы для поиска неисправностей — непростая задача, но применяя логику и зная основные принципы, есть хороший шанс, что Вы эту проблему найдете. Отправлять мне сообщение: «Это не работает» бессмысленно — я не знаю, почему это не работает и один и тот же симптом может иметь множество возможных причин. В большинстве случаев показания напряжений также не помогают, потому что их часто понимают неправильно. Посмотрите, как напряжения показаны выше.

    Напряжение на R6 составляет 0,65 В, а не 55,35 В. Последнее значение бессмысленно, потому что значение напряжения питания будет меняться по мере его считывания, а показания, вероятно, будут сильно ошибочными, из-за чего непригодны для использования. Аналогично считываются и многие другие значения. Излишне говорить, что следует проявлять большую осторожность, когда показания относятся к шинам (линиям) питания, потому что проскальзывание щупа может легко вызвать гораздо бо́льшие проблемы, чем они были в самом начале.

    5.3 Резюме


    Цель этого упражнения заключалась в том, чтобы продемонстрировать общие процессы метода исключения, которые должны использоваться для определения типа и характера дефекта, дабы его можно было затем легко исправить. В одной статье невозможно охватить все возможности, даже с помощью простых примерных схем, но, тщательно измерив напряжения, сможете отслеживать наиболее вероятную причину без необходимости «перепахивания» всей схемы!

    Ответ на маленькую загадку для рисунка 1 выше: на эмиттерном резисторе поглотителя (источника) тока должно быть около 650 мВ, потому что в базовую цепь включены два последовательно соединенных диода. D1 уравновешивает (или «отменяет») база-эмиттерное напряжение обоих транзисторов — как Q3, так и Q4 — также 650 мВ. Независимо от того, какое напряжение падает на D2 (и мы знаем, что оно должно быть 650 мВ), такое же напряжение должно падать на эмиттерных резисторах. Это действительно просто, но Вам может понадобиться немного больше опыта, прежде чем это увидите.

    Полезная вещь, которую нужно помнить в отношении транзисторов: если транзистор греется — значит, он работает (или пытается работать). Снова вернемся к рис. 1. Если Q4 становится горячим, а Q5 холодный, то из строя вышел, вероятно, Q5, а не Q4, как предполагалось первоначально.

    Все эти рекомендации применительны к основной статье. Важна способность мыслить логично и методично и прокладывать себе путь через схему. Слепое измерение напряжений без понимания того, что они означают в контексте, ответа не даст, но если Вы сможете решить задачу, описанную здесь, то узнаете гораздо больше, чем могли бы ожидать.
    1   2   3   4   5   6   7   8   9   ...   12


    написать администратору сайта