Главная страница
Навигация по странице:

  • Термин "высокие статистические технологии".

  • Почему живучи "низкие статистические технологии"

  • Как ускорить внедрение "высоких статистических технологий"

  • Эконометрические методы в современной экономике. Самышева Екатерина Юрьевна


    Скачать 301 Kb.
    НазваниеСамышева Екатерина Юрьевна
    Дата03.12.2022
    Размер301 Kb.
    Формат файлаdoc
    Имя файлаЭконометрические методы в современной экономике.doc
    ТипДокументы
    #826434
    страница5 из 6
    1   2   3   4   5   6

    О прикладных работах с использованием методов прикладной статистики. Проблемы организации теоретических работ в области эконометрики и прикладной математической статистики лишь в перспективе важны для практической работы. Как правило, те, кто обрабатывает реальные данные, недостаточно знакомы с теоретическими основами алгоритмов и тем более не следят за событиями "на переднем крае" обсуждаемой научно-методической дисциплины. Это вполне естественно, поскольку основная специальность у таких специалистов - иная.

                Несколько огрубляя, можно сказать, что реально используется только то, что имеется в учебниках и справочниках, в широко распространенных программных продуктах, а научные публикации с точки зрения прикладника представляют собой "информационный шум". Ситуация усугубляется традиционным ненормальным положением в отечественной статистике [7], наличием ошибок во многих изданиях.

                К сожалению, учебная и научная литература на русском языке (как, впрочем, и на иных языках) по эконометрике и прикладной статистике в целом далека от совершенства, переполнена устаревшими методологическими подходами и прямыми ошибками. До сих пор наилучшим изданием остаются "Таблицы математической статистики" Л.Н. Большева и Н.В.Смирнова [13], созданные в 60-х годах.

                Хотя студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования" и др.), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате подавляющую часть специалистов по эконометрике, прикладной математической статистике и их применению следует считать самоучками.

                Поэтому большое значение имеет введение в технических вузах курса "Прикладная математическая статистика", а на экономических факультетах таких вузов – курса «Эконометрика», поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных (см. главу 1). Это естественно делать, например, в рамках подпрограммы "Технологии подготовки кадров для национальной технологической базы" федеральной целевой программы "Национальная технологическая база". Естественно, что курсы "Прикладная математическая статистика" и «Эконометрика» должны быть обеспечены соответствующими учебниками и учебными пособиями, методическими материалами и обучающими компьютерными системами.

                Только через систему образования можно поднять уровень массового применения эконометрики и прикладной статистики и сократить отставание от "переднего края" теории. А это отставание в настоящее время составляет не менее 20 (но и не более 100) лет.

     

    15.4. Высокие статистические технологии и эконометрика

     

    В настоящем пункте подробно обсуждается ранее введенное понятие "высокие статистические технологии". Рассматриваются причины широкого распространения устаревших и частично ошибочных "низких" статистических технологий. Показано, что из всех путей повышения качества прикладных статистических исследований наиболее эффективным является расширение обучения "высоким статистическим технологиям", в том числе под именем эконометрики. Описан опыт работы Института высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана.

                Термин "высокие технологии" популярен в современной научно-технической литературе. Он используется для обозначения наиболее передовых технологий, опирающихся на последние достижения научно-технического прогресса. Есть такие технологии и среди технологий статистического анализа данных - как в любой интенсивно развивающейся научно-практической области.

                Примеры высоких статистических технологий и входящих в них алгоритмов анализа данных, подробный анализ современного состояния и перспектив развития даны выше при обсуждении “точек роста” эконометрики как научно-практической дисциплины. В качестве "высоких статистических технологий" были выделены технологии непараметрического анализа данных; устойчивые (робастные) технологии; технологии, основанные на размножении выборок, на использовании достижений статистики  нечисловых данных и статистики интервальных данных.

    Термин "высокие статистические технологии". Обсудим пока не вполне привычный термин "высокие статистические технологии". Каждое из трех слов несет свою смысловую нагрузку.

     "Высокие", как и в других областях, означает, что статистическая технология опирается на современные достижения статистической теории и практики, в частности, теории  вероятностей и прикладной математической статистики. При этом "опирается на современные научные достижения" означает, во-первых, что математическая основа технологии получена сравнительно недавно в рамках соответствующей научной дисциплины, во-вторых, что алгоритмы расчетов разработаны и обоснованы в соответствии в нею (а не являются т.н. "эвристическими"). Со временем, если новые подходы и результаты не заставляют пересмотреть оценку применимости и возможностей технологии, заменить ее на более современную, "высокие статистические технологии" переходят в "классические статистические технологии", такие, как метод наименьших квадратов. Итак, высокие статистические технологии - плоды недавних серьезных научных исследований. Здесь два ключевых понятия - "молодость" технологии (во всяком случае, не старше 50 лет, а лучше - не старше 10 или 30 лет) и опора на "высокую науку".

    Термин "статистические" привычен, но разъяснить его нелегко. Во всяком случае, к деятельности Государственного комитета РФ по статистике высокие статистические технологии отношения не имеют. Как известно, сотрудники проф. В.В. Налимова собрали более 200 определений термина "статистика" [44]. Полемика вокруг терминологии иногда принимает весьма острые формы (см., например, редакционные замечания к статье [1], написанные в стиле известных высказываний о генетике и кибернетике конца 1940-х годов). Современное представление о терминологии в области теории вероятностей и математической статистики отражено в Приложении 1 к настоящей книге, подготовленном в противовес распространенным ошибкам и неточностям в этой области. В частности, с точки зрения эконометрики статистические данные – это результаты измерений, наблюдений, испытаний, анализов, опытов, а "статистические технологии" - это технологии анализа статистических данных.

    Наконец, редко используемый применительно к статистике термин "технологии". Статистический анализ данных, как правило, включает в себя целый ряд процедур и алгоритмов, выполняемых последовательно, параллельно или по более сложной схеме. В частности, можно выделить следующие этапы:

    - планирование статистического исследования;

    - организация сбора необходимых статистических данных по оптимальной или хотя бы рациональной программе (планирование выборки, создание организационной структуры и подбор команды эконометриков или статистиков, подготовка кадров, которые будут заниматься сбором данных, а также контролеров данных и т.п.);

    - непосредственный сбор данных и их фиксация на тех или иных носителях (с контролем качества сбора и отбраковкой ошибочных данных по соображениям предметной области);

    - первичное описание данных (расчет различных выборочных характеристик, функций распределения, непараметрических оценок плотности, построение гистограмм, корреляционных полей, различных таблиц и диаграмм  и т.д.),

    - оценивание тех или иных числовых или нечисловых характеристик и параметров распределений (например, непараметрическое интервальное оценивание коэффициента вариации или восстановление зависимости между откликом и факторами, т.е. оценивание функции),

    - проверка статистических гипотез (иногда их цепочек - после проверки предыдущей гипотезы принимается решение о проверке той или иной последующей гипотезы),

    - более углубленное изучение, т.е. применение различных алгоритмов многомерного статистического анализа, алгоритмов диагностики и построения классификации, статистики нечисловых и интервальных данных, анализа временных рядов и др.;

    - проверка устойчивости полученных оценок и выводов относительно допустимых отклонений исходных данных и предпосылок используемых вероятностно-статистических моделей, допустимых преобразований шкал измерения, в частности, изучение свойств оценок методом размножения  выборок;

    - применение полученных статистических результатов в прикладных целях (например, для диагностики конкретных материалов, построения прогнозов, выбора инвестиционного проекта из предложенных вариантов, нахождения оптимальных режима осуществления технологического процесса, подведения итогов испытаний образцов технических устройств  и др.),

    - составление итоговых отчетов, в частности, предназначенных для тех, кто не является специалистами в эконометрических и статистических методах анализа данных, в том числе для руководства - "лиц, принимающих решения". 

    Возможны и иные структуризации статистических технологий. Важно подчеркнуть, что квалифицированное и результативное применение статистических методов - это отнюдь не проверка одной отдельно взятой статистической гипотезы или оценка параметров одного заданного распределения из фиксированного семейства. Подобного рода операции - только отдельные кирпичики, из которых складывается здание статистической технологии. Между тем учебники и монографии по статистике обычно рассказывают об отдельных кирпичиках, но не обсуждают проблемы их организации в технологию, предназначенную для прикладного использования.

    Итак, процедура эконометрического или статистического анализа данных – это информационный технологический процесс, другими словами, та или иная информационная технология. Статистическая информация подвергается разнообразным операциям (последовательно, параллельно или по более сложным схемам). В настоящее время об автоматизации всего процесса статистического анализа данных говорить было бы несерьезно, поскольку имеется слишком много нерешенных проблем, вызывающих дискуссии среди статистиков. "Экспертные системы" в области статистического анализа данных пока не стали рабочим инструментом статистиков. Ясно, что и не могли стать. Можно сказать и жестче - это пока научная фантастика или даже  вредная утопия.

    В литературе статистические технологии рассматриваются явно недостаточно. В частности, обычно все внимание сосредотачивается на том или ином элементе технологической цепочки, а переход от одного элемента к другому остается в тени. Между тем проблема "стыковки" статистических алгоритмов, как известно, требует специального рассмотрения, поскольку в результате  использования предыдущего алгоритма зачастую нарушаются условия применимости последующего. В частности, результаты наблюдений могут перестать быть независимыми, может измениться их распределение и т.п. (см. обсуждение этой проблемы в статье [45]).

    Например, при проверке статистических гипотез большое значение имеют такие хорошо известные характеристики статистических критериев, как уровень значимости и мощность. Методы их расчета и использования при проверке одной гипотезы обычно хорошо известны. Если же сначала проверяется одна гипотеза, а потом с учетом результатов ее проверки - вторая, то итоговая процедура, которую также можно рассматривать как проверку некоторой (более сложной) статистической гипотезы, имеет характеристики (уровень значимости и мощность), которые, как правило, нельзя просто выразить через характеристики двух составляющих гипотез, а потому они обычно неизвестны. В результате итоговую процедуру нельзя рассматривать как научно обоснованную, она относится к эвристическим алгоритмам. Конечно, после соответствующего изучения, например, методом Монте-Карло, она  может войти в число научно обоснованных процедур прикладной статистики.

    Почему живучи "низкие статистические технологии"? "Высоким статистическим технологиям" противостоят, естественно, "низкие статистические технологии". Это те технологии, которые не соответствуют современному уровню науки и техники. Обычно они одновременно и устарели, и не адекватны сути решаемых эконометрических и статистических задач.

    Примеры таких технологий неоднократно критически рассматривались на страницах различных изданий. В главе 4 рассматривались примеры неправильного использования критерия Вилкоксона для проверки совпадения теоретических медиан или функций распределения двух выборок. Можно также вспомнить критику использования классических процентных точек критериев Колмогорова и омега-квадрат в ситуациях, когда параметры оцениваются по выборке и эти оценки подставляются в "теоретическую" функцию распределения [46]. Приходилось констатировать широкое распространение таких порочных технологий и конкретных алгоритмов, в том числе в государственных и международных стандартах (перечень ошибочных стандартов дан в статье [47]), учебниках и распространенных пособиях. Тиражирование ошибок происходит обычно в процессе обучения в вузах или путем самообразования при использовании недоброкачественной литературы.

                На первый взгляд вызывает удивление устойчивость "низких статистических технологий", их постоянное возрождение во все новых статьях, монографиях, учебниках. Поэтому, как ни странно, наиболее "долгоживущими" оказываются не работы, посвященные новым научным результатам, а публикации, разоблачающие ошибки, типа статьи [46]. Прошло больше 15 лет с момента ее публикации, но она по-прежнему актуальна, поскольку ошибочное применение критериев Колмогорова и омега-квадрат по-прежнему распространено.

    Целесообразно рассмотреть здесь по крайней мере три обстоятельства, которые определяют эту устойчивость ошибок.

    Во-первых, прочно закрепившаяся традиция. Учебники по т.н. «Общей теории статистики», написанные экономистами (поскольку учебная дисциплина "статистика" официально относится к экономике), если беспристрастно проанализировать их содержание, состоят в основном из введения в прикладную статистику, изложенного в стиле «низких статистических технологий», на уровне 1950-х годов. К "низкой" прикладной статистике добавлена некоторая информация о деятельности органов Госкомстата РФ. Примерно таково же положение со статистическими методами в медицине - одни и те же "низкие статистические технологии" переписываются из книги в книгу. Кратко говоря,  «профессора-невежды порождают новых невежд» [7]. Так мы писали в 1990 г., но никто из указанных невежд даже не поинтересовался, какие ошибки имеются в виду. Новое поколение, обучившись ошибочным алгоритмам, их использует, а с течением времени и достижением должностей, ученых званий и степеней– пишет новые учебники со старыми ошибками.

    Руководство Госкомстата РФ, воспользовавшись катаклизмами начала 1990-х годов, сделало вид, что ему неизвестно о создании в 1990 г. Всесоюзной статистической ассоциации и секции статистических методов в ее составе. Госкомстат РФ по-прежнему закрыт от "высоких статистических технологий" и работает на уровне позапрошлого века. Защита стала надежнее, поскольку в соответствии с современным стилем аппаратной работы на письма и обращения можно не отвечать.

    Второе обстоятельство связано с большими трудностями при оценке экономической эффективности применения статистических методов вообще и при оценке вреда от применения ошибочных методов в частности. (А без такой оценки как докажешь, что "высокие статистические технологии" лучше "низких"?) Некоторые соображения по первому из этих вопросов приведены в статье [1], содержащей оценки экономической эффективности ряда работ по применению статистических методов. При оценке вреда от применения ошибочных методов приходится учитывать, что общий успех в конкретной инженерной или научной работе вполне мог быть достигнут вопреки их применению, за счет "запаса прочности" других составляющих общей работы. Например, преимущество одного технологического приема над другим можно продемонстрировать как с помощью критерия Крамера-Уэлча проверки равенства математических ожиданий (что правильно), так и с помощью двухвыборочного критерия Стьюдента (что, вообще говоря, неверно, т.к. обычно не выполняются условия применимости этого критерия - нет ни нормальности распределения, ни равенства дисперсий). Кроме того, приходится выдерживать натиск невежд, защищающих свои ошибочные работы, например, государственные стандарты. Вместо исправления ошибок применяются самые разные приемы бюрократической борьбы с теми, кто разоблачает ошибки (подробнее см. статью [47]).

    Третье существенное обстоятельство – трудности со знакомством с высокими статистическими технологиями. В течение последних 10 лет только журнал "Заводская лаборатория" систематически предоставлял такие возможности. К сожалению, поток современных отечественных и переводных статистических книг, выпускавшихся ранее, в частности, издательством “Финансы и статистика”, практически превратился в узкий ручеек… Возможно, более существенным является влияние естественной задержки во времени между созданием "новых статистических технологий" и написанием полноценной и объемной учебной и методической литературы. Она должна позволять знакомиться с новой методологией, новыми методами, теоремами, алгоритмами, технологиями не по кратким оригинальным статьям, а при обычном обучении в высшей школе.

    Как ускорить внедрение "высоких статистических технологий"? Таким образом, весь арсенал используемых эконометрических и статистических методов можно распределить по трем потокам:

    -         высокие статистические технологии;

    -         классические статистические технологии,

    -         низкие статистические технологии.

    Основная современная проблема статистических технологий состоит в обеспечении того, чтобы в конкретных эконометрических и статистических исследованиях использовались только технологии первых двух типов. При этом под классическими статистическими технологиями понимаем технологии почтенного возраста, сохранившие свое значение для современной статистической практики. Таковы метод наименьших квадратов, статистики Колмогорова, Смирнова, омега-квадрат, непараметрические коэффициенты корреляции Спирмена и Кендалла и многие другие статистические процедуры.

                Каковы возможные пути решения основной современной проблемы в области статистических технологий?

                Бороться с конкретными невеждами - дело почти безнадежное. Отстаивая свое положение и должности, они либо нагло игнорируют информацию о своих ошибках, как это делают авторы ряда учебников по "Общей теории статистики", либо с помощью различных бюрократических приемов уходят и от ответственности, и от исправления ошибок по существу (как это было со стандартами по статистическим методам - см. статью [6]). Третий вариант  - признание и исправление ошибок - встречается, увы, редко. Но встречается.

                Конечно, необходима демонстрация квалифицированного применения высоких статистических технологий. В 1960-70-х годах этим занималась лаборатория акад. А.Н. Колмогорова в МГУ им. М.В. Ломоносова. Секция "Математические методы исследования" журнала 2Заводская лаборатория" опубликовала за последние 40 лет более 1000 статей в стиле "высоких статистических технологий". В настоящее время действует Институт высоких статистических технологий и эконометрики МГТУ им. Н.Э.Баумана. Есть, конечно, целый ряд других научных коллективов, работающих на уровне "высоких статистических технологий".

                Но самое основное - обучение. Какие бы новые научные результаты ни были получены, если они остаются неизвестными студентам, то новое поколение исследователей и инженеров вынуждено осваивать их по одиночке, а то и переоткрывать. Т.е. практически новые научные результаты почти исчезают, едва появившись. Как уже от меячалось, избыток публикаций превратился в тормоз развития. По нашим данным, к настоящему времени по статистическим технологиям опубликовано не менее миллиона статей и книг, из них не менее 100 тысяч являются актуальными для современного специалиста. Реальное число публикаций, которые способен освоить исследователь, по нашей оценке, не превышает 2-3 тысяч. Во всяком случае, в наиболее "толстом" (на русском языке) трехтомнике по статистике М. Дж. Кендалла и А. Стьюарта [8-10] приведено около 2 тысяч литературных ссылок. Итак, каждый исследователь знаком не более чем с 2-3% актуальных литературных источников. Поскольку существенная часть публикаций заражена "низкими статистическими  технологиями", то исследователь самоучка имеет мало шансов выйти на уровень "высоких статистических технологий". Одновременно приходится констатировать, что масса полезных результатов погребена в изданиях прошлых десятилетий и имеет мало шансов встать в ряды "высоких статистических технологий" без специально организованных усилий современных специалистов.

    Итак, еще и еще раз: основное - обучение. Несколько огрубляя, можно сказать: что то, что попало в учебные курсы и соответствующие учебные пособия - то сохраняется, что не попало - то пропадает. Подробнее об обучении - несколько позже. Сейчас - об упомянутом выше Институте высоких статистических технологий и эконометрики МГТУ им. Н.Э.Баумана.
    1   2   3   4   5   6


    написать администратору сайта