Главная страница
Навигация по странице:

  • Сети Frame Realy и их особенности. РЕФЕРАТ Выполнил

  • Руководитель

  • Имя поля Назначение

  • CIR=B(c)/T(c)

  • 4.Стек протоколов frame relay

  • 6.Поддержка качества обслуживания

  • 7.Достоинства сети Frame Relay

  • 8.Недостатки сети Frame Relay

  • Список использованной литературы

  • Сети Frame Realy и их особенности


    Скачать 292.63 Kb.
    НазваниеСети Frame Realy и их особенности
    Дата20.10.2022
    Размер292.63 Kb.
    Формат файлаdoc
    Имя файлаFrame Relay.doc
    ТипЛитература
    #744406

    МИНИСТЕРСТВО ОБРАЗОВНИЯ И НАУКИ РЕСПУБЛИКИ БАШКОРТОСТАН ГБПОУ ТУЙМАЗИНСКИЙ ПЕДАГОГИЧЕСКИЙ КОЛЛЕДЖ

     

    Специальность 09.02.07 Информационные системы и программировани

     

     

     

     

     

    Сети Frame Realy и их особенности.

    РЕФЕРАТ

     

    Выполнил:                                    Муллаянов Денис Флоридович Специальность 09.02.07 информационные системы и          программирование,                                          курс II, группа 25                               форма обучения: очная

    Руководитель:                                        Ирина Анатольевна                 преподователь проффессионального        цикла

    Дата защиты______________                                                                                                                      Оценка___________________                                                                                                                Подпись__________________

     

     

     

    Туймазы                                                                                      2022

    Содержание:

    Введение

    • 1 Формат кадра

    • 2 CIR и EIR

    • 3 Виртуальные каналы (PVC и SVC)

    • 4 Стек протоколов frame relay

    • 5 Использование сетей frame relay

    • 6 Поддержка качества обслуживания

    • 7 Достоинства

    • 8 Недостатки

    Заключение

    Литература

    Введение


    Frame relay (англ. «ретрансляция кадров», FR) — протокол канального уровня сетевой модели OSI. Служба коммутации пакетов Frame Relay в настоящее время широко распространена во всём мире. Максимальная скорость, допускаемая протоколом FR — 34,368 мегабит/сек (каналы E3). Коммутация: точка-точка.

    Frame Relay был создан в начале 1990-х в качестве замены протоколу X.25 для быстрых надёжных каналов связи, технология FR архитектурно основывалась на X.25 и во многом сходна с этим протоколом, однако в отличие от X.25, рассчитанного на линии с достаточно высокой частотой ошибок, FR изначально ориентировался на физические линии с низкой частотой ошибок, и поэтому большая часть механизмов коррекции ошибок X.25 в состав стандарта FR не вошла. В разработке спецификации принимали участие многие организации; многочисленные поставщики поддерживают каждую из существующих реализаций, производя соответствующее аппаратное и программное обеспечение.

    Frame relay обеспечивает множество независимых виртуальных каналов (Virtual Circuits, VC) в одной линии связи, идентифицируемых в FR-сети по идентификаторам подключения к соединению (Data Link Connection Identifier, DLCI). Вместо средств управления потоком включает функции извещения о перегрузках в сети. Возможно назначение минимальной гарантированной скорости (CIR) для каждого виртуального канала.

    В основном применяется при построении территориально распределённых корпоративных сетей, а также в составе решений, связанных с обеспечением гарантированной пропускной способности канала передачи данных (VoIP, видеоконференции и т. п.).

    1. Формат кадра


    Флаг (1 Byte)

    Адрес (2-4 Byte)

    Данные (переменный размер)

    FCS (2 Byte)

    Флаг (1 Byte)

    • Каждый кадр начинается и замыкается «флагом» — последовательностью «01111110». Для предотвращения случайной имитации последовательности «флаг» внутри кадра при его передаче проверяется всё его содержание между двумя флагами и после каждой последовательности, состоящей из пяти идущих подряд бит «1», вставляется бит «0». Эта процедура (bit stuffing) обязательна при формировании любого кадра FR, при приёме эти биты «0» отбрасываются.

    • FCS (Frame Check Sequence) — проверочная последовательность кадра служит для обнаружения ошибок и формируется аналогично циклическому коду HDLC.

    • Поле данных имеет минимальную длину в 1 октет, максимальную по стандарту Frame Relay Forum — 1600 октетов, однако в реализациях некоторых производителей FR-оборудования допускается превышение максимального размера (до 4096 октетов).

    • Поле Адрес кадра Frame Relay, кроме собственно адресной информации, содержит также и дополнительные поля управления потоком данных и уведомлений о перегрузке канала и имеет следующую структуру:

    DLCI (6 Bit)

    C/R (1 Bit)

    EA (1 Bit)

    DLCI (4 Bit)

    FECN (1 Bit)

    BECN (1 Bit)

    DE (1 Bit)

    EA (1 Bit)

    Наименования и значения полей:

    Имя поля

    Назначение

    DLCI

    Data Link Connection Identifier — идентификатор виртуального канала (PVC), мультиплексируемого в физический канал. DLCI имеют только локальное значение и не обеспечивают внутрисетевой адресации.

    C/R

    Command / Response — зарезервирован, в настоящее время не используется.

    EA

    Address Field Extension Bit — бит расширения адреса. DLCI содержится в 10 битах, входящих в два октета заголовка, однако возможно расширение заголовка на целое число дополнительных октетов с целью указания адреса, состоящего более чем из 10 бит. EA устанавливается в конце каждого октета заголовка; если он имеет значение «1», то это означает, что данный октет в заголовке последний.

    FECN

    Forward Explicit Congestion Notification — извещение о перегрузке канала в прямом направлении.

    BECN

    Backward Explicit Congestion Notification — извещение о перегрузке канала в обратном направлении.

    DE

    Discard Eligibility Indicator — индикатор разрешения сброса кадра при перегрузке канала. Выставляется в «1» для данных, подлежащих передаче в негарантированной полосе (EIR) и указывает на то, что данный кадр может быть уничтожен в первую очередь.

     

    2. CIR и EIR


    CIR (англ. Committed Information Rate) — гарантированная полоса пропускания виртуального канала PVC в сетях Frame Relay (FR).

    В первоначальном наборе стандартов (ANSI T1S1) CIR как отдельный параметр отсутствует, но для отдельного виртуального канала были определены параметры B(c) (bits committed, Committed Burst Size), B(e) (bits excess) и T(c) (Committed Rate Measurement Interval). B(c) при этом определяется как количество бит, гарантированно передаваемых за время T(c) даже при перегрузке сети, B(e) — максимальное количество бит, которые могут быть переданы за время T(c) при недогрузке сети, то есть без гарантии доставки: заголовки пакетов, отправляемые после превышения B(c) метятся битом DE (discard eligible, аналогичен CLP в ATM) и в случае возникновения в сети перегрузки уничтожаются на коммутаторах перегруженного участка.

    Таким образом, для виртуального канала могут быть определены две полосы пропускания:

    • CIR=B(c)/T(c) — гарантированная полоса пропускания

    • EIR=(B(c) + B(e))/T(c) — максимальная негарантированная полоса пропускания (добавляется возможный дополнительный объем трафика)

    Возможна настройка и работа FR-каналов со значением CIR, равным нулю.

    В ANSI T1S1 значение T(c) не было определено, так как значения T(c), B(c) и B(e) являются связанными параметрами, зависящими от скоростей физических интерфейсов, агрегированных полос пропускания виртуальных каналов, размеров буферов FR-коммутатора и других параметров, зависящих от реализации и настроек коммутатора.

    Однако CIR и EIR оказались удобными показателями для описания параметров каналов при заключении соглашений между операторами FR-сетей и потребителями их услуг, более того, во многих случаях T(c) может динамически пересчитываться в зависимости от характера трафика, поэтому в RFC 3133 (Terminology for Frame Relay Benchmarking) CIR является первичным параметром и T(c) определяется как временной интервал, необходимый для поддержания CIR, то есть T(c)=B(c)/CIR, выступая в качестве аналога TCP Sliding Window.

    В сетевых технологиях при множественном доступе к разделяемому каналу с двухуровневой приоритизацией (некоторые беспроводные и спутниковые сети и т. д.) также используют термин CIR для приоритезируемой клиентской полосы пропускания, при этом CIR является одним из целевых параметров конфигурации шейперов (shapers) — подсистем сглаживания трафика с буферизацией (RFC 2963, A Rate Adaptive Shaper for Differentiated Services), в этом случае вместо EIR используется комбинация параметров MIR (Maximum Information Rate) и PIR (Peak Information Rate).

     

    3. Виртуальные каналы (PVC и SVC)


    Для передачи данных от отправителя к получателю в сети Frame Relay создаются виртуальные каналы, VC (англ. Virtual Circuit), которые бывают двух видов:

    • постоянный виртуальный канал, PVC (Permanent Virtual Circuit), который создаётся между двумя точками и существует в течение длительного времени, даже в отсутствие данных для передачи;

    • коммутируемый виртуальный канал, SVC (Switched Virtual Circuit), который создаётся между двумя точками непосредственно перед передачей данных и разрывается после окончания сеанса связи

    4.Стек протоколов frame relay

    Технология frame relay использует для передачи данных технику виртуальных соединений, аналогичную той, которая применялась в сетях Х.25, однако стек протоколов frame relay передает кадры (при установленном виртуальном соединении) по протоколам только физического и канального уровней, в то время как в сетях Х.25 и после установления соединения пользовательские данные передаются протоколом 3-го уровня.

    Кроме того, протокол канального уровня LAP-F в сетях frame relay имеет два режима работы - основной (core) и управляющий (control). В основном режиме, который фактически практикуется в сегодняшних сетях frame relay, кадры передаются без преобразования и контроля, как и в коммутаторах локальных сетей. За счет этого сети frame relay обладают весьма высокой производительностью, так как кадры в коммутаторах не подвергаются преобразованию, а сеть не передает квитанции подтверждения между коммутаторами на каждый пользовательский кадр, как это происходит в сети Х.25. Пульсации трафика передаются сетью frame relay достаточно быстро и без больших задержек.

    При таком подходе уменьшаются накладные расходы при передаче пакетов локальных сетей, так как они вкладываются сразу в кадры канального уровня, а не в пакеты сетевого уровня, как это происходит в сетях Х.25.

    Структура стека (рис. 6.25) хорошо отражает происхождение технологии frame relay в недрах технологии ISDN, так как сети frame relay заимствуют многое из стека протоколов ISDN, особенно в процедурах установления коммутируемого виртуального канала.

    https://studizba.space/z.php?f=/uploads/lectures/informatika-i-programmirovanie/kompyuternye-seti-i-telekommunikacii/files/0-seti-frame-relay.jpg

    Рис. 6.25. Стек протоколов frame relay

    Основу технологии составляет протокол LAP-F core, который является весьма упрощенной версией протокола LAP-D. Протокол LAP-F (стандарт Q.922 ITU-T) работает на любых каналах сети ISDN, а также на каналах типа Т1/Е1. Терминальное оборудование посылает в сеть кадры LAP-F в любой момент времени, считая что виртуальный канал в сети коммутаторов уже проложен. При использовании PVC оборудованию frame relay нужно поддерживать только протокол LAP-F core.

    Протокол LAP-F contol является необязательной надстройкой над LAP-F core, которая выполняет функции контроля доставки кадров и управления потоком. С помощью протокола LAP-F control сетью реализуется служба frame switching.

    Для установки коммутируемых виртуальных каналов стандарт ITU-T предлагает канал D пользовательского интерфейса. На нем по-прежнему работает знакомый протокол LAP-D, который используется для надежной передачи кадров в сетях ISDN. Поверх этого протокола работает протокол Q.931 или протокол Q.933 (который является упрощением и модификацией протокола Q.931 ISDN), устанавливающий виртуальное соединение на основе адресов конечных абонентов (в стандарте Е.164 или ISO 7498), а также номера виртуального соединения, который в технологии frame relay носит название Data Link Connection Identifier - DLCI.

    После того как коммутируемый виртуальный канал в сети frame relay установлен посредством протоколов LAP-D и 0,931/933, кадры могут транслироваться по протоколу LAP-F, который коммутирует их с помощью таблиц коммутации портов, в которых используются локальные значения DLCI. Протокол LAP-F core выполняет не все функции канального уровня по сравнению с протоколом LAP-D, поэтому ITU-T изображает его на пол-уровня ниже, чем протокол LAP-D, оставляя место для функций надежной передачи пакетов протоколу LAP-F control.

    Из-за того, что технология frame relay заканчивается на канальном уровне, она хорошо согласуется с идеей инкапсуляции пакетов единого сетевого протокола, например IP, в кадры канального уровня любых сетей, составляющих интерсеть. Процедуры взаимодействия протоколов сетевого уровня с технологией frame relay стандартизованы, например, принята спецификация RFC 1490, определяющая методы инкапсуляции в трафик frame relay трафика сетевых протоколов и протоколов канального уровня локальных сетей и SNA.

    Другой особенностью технологии frame relay является отказ от коррекции обнаруженных в кадрах искажений. Протокол frame relay подразумевает, что конечные узлы будут обнаруживать и корректировать ошибки за счет работы протоколов транспортного или более высоких уровней. Это требует некоторой степени интеллектуальности от конечного оборудования, что по большей части справедливо для современных локальных сетей. В этом отношении технология frame relay близка к технологиям локальных сетей, таким как Ethernet, Token Ring и FDDI, которые тоже только отбрасывают искаженные кадры, но сами не занимаются их повторной передачей.

    Структура кадра протокола LAP-F приведена на рис. 6.26.

    https://studizba.space/z.php?f=/uploads/lectures/informatika-i-programmirovanie/kompyuternye-seti-i-telekommunikacii/files/1-seti-frame-relay.jpg

    Рис. 6.26. Формат кадра LAP-F

    За основу взят формат кадра HDLC, но поле адреса существенно изменило свой формат, а поле управления вообще отсутствует.

    Поле номера виртуального соединения (Data Link Connection Identifier, DLCI) состоит из 10 битов, что позволяет использовать до 1024 виртуальных соединений. Поле DLCI может занимать и большее число разрядов - этим управляют признаки ЕАО и ЕА1 (Extended Address - расширенный адрес). Если бит в этом признаке установлен в ноль, то признак называется ЕАО и означает, что в следующем байте имеется продолжение поля адреса, а если бит признака равен 1, то поле называется ЕА1 и индицирует окончание поля адреса.

    Десятиразрядный формат DLCI является основным, но при использовании трех байт для адресации поле DLCI имеет длину 16 бит, а при использовании четырех байт - 23 бита.

    Стандарты frame relay (ANSI, ITU-T) распределяют адреса DLCI между пользователями и сетью следующим образом:

    · 0 - используется для виртуального канала локального управления (LMI);

    · 1 -15 - зарезервированы для дальнейшего применения;

    · 16-991 - используются абонентами для нумерации PVC и SVC;

    · 992-1007 - используются сетевой транспортной службой для внутрисетевых соединений;

    · 1008-1022 - зарезервированы для дальнейшего применения;

    · 1023 - используются для управления канальным уровнем.

    Таким образом, в любом интерфейсе frame relay для оконечных устройств пользователя отводится 976 адресов DLCI.

    Поле данных может иметь размер до 4056 байт.

    Поле C/R имеет обычный для протокола семейства HDLC смысл - это признак «команда-ответ » .

    Поля DE, FECN и BECN используются протоколом для управлением трафиком и поддержания заданного качества обслуживания виртуального канала.

    5. Использование сетей frame relay

    Услуги frame relay обычно предоставляются теми же операторами, которые эксплуатируют сети Х.25. Большая часть производителей выпускает сейчас коммутаторы, которые могут работать как по протоколам Х.25, так и по протоколам frame relay.

    Технология frame relay начинает занимать в территориальных сетях с коммутацией пакетов ту же нишу, которую заняла в локальных сетях технология Ethernet. Их роднит то, что они предоставляют только быстрые базовые транспортные услуги, доставляя кадры в узел назначения без гарантий, дейтаграммным способом. Однако если кадры теряются, то сеть frame realay, как и сеть Ethernet, не предпринимает никаких усилий для их восстановления. Отсюда следует простой вывод - полезная пропускная способность прикладных протоколов при работе через сети frame relay будет зависеть от качества каналов и методов восстановления пакетов на уровнях стека, расположенного над протоколом frame relay. Если каналы качественные, то кадры будут теряться и искажаться редко, так что скорость восстановления пакетов протоколом TCP или NCP будет вполне приемлема. Если же кадры искажаются и теряются часто, то полезная пропускная способность в сети frame relay может упасть в десятки раз, как это происходит в сетях Ethernet при плохом состоянии кабельной системы.

    Поэтому сети frame relay следует применять только при наличии на магистральных каналах волоконно-оптических кабелей высокого качества. Каналы доступа могут быть и на витой паре, как это разрешает интерфейс G.703 или абонентское окончание ISDN. Используемая на каналах доступа аппаратура передачи данных должна обеспечить приемлемый уровень искажения данных - не ниже 10-6.

    На величины задержек сеть frame relay гарантий не дает, и это основная причина, которая сдерживает применение этих сетей для передачи голоса. Передача видеоизображения тормозится и другим отличием сетей frame relay от АТМ - низкой скоростью доступа в 2 Мбит/с, что для передачи видео часто недостаточно.

    Тем не менее многие производители оборудования для сетей frame relay поддерживают передачу голоса. Поддержка устройствами доступа заключается в присвоении кадрам, переносящим замеры голоса, приоритетов. Магистральные коммутаторы frame relay должны обслуживать такие кадры в первую очередь. Кроме того, желательно, чтобы сеть frame relay, передающая кадры с замерами голоса, была недогруженной. При этом в коммутаторах не возникают очереди кадров, и средние задержки в очередях близки к нулевым.

    Необходимо также соблюдение еще одного условия для качественной передачи голоса - передавать замеры голоса необходимо в кадрах небольших размеров, иначе на качество будут влиять задержки упаковки замеров в кадр, так называемые задержки пакетизации, которые более подробно рассматриваются в разделе, посвященном технологии АТМ.

    Для стандартизации механизмов качественной передачи голоса через сеть frame relay выпущена спецификация FRF.11. Однако в ней решены еще не все проблемы передачи голоса, поэтому работа в этом направлении продолжается.

    Ввиду преобладания в коммерческих сетях frame relay услуг постоянных коммутируемых каналов и гарантированной пропускной способности, эти сети предоставляют услуги, очень похожие на услуги дробных выделенных линий Т1/Е1, но только за существенно меньшую плату.

    При использовании PVC сеть frame relay хорошо подходит для объединения локальных сетей с помощью мостов, так как в этом случае от моста не нужна поддержка механизма установления виртуального канала, что требует некоторого программного «интеллекта » .

    6.Поддержка качества обслуживания

    Технология frame relay благодаря особому подходу гарантированно обеспечивает основные параметры качества транспортного обслуживания, необходимые при объединении локальных сетей.

    Вместо приоритезации трафика используется процедура заказа качества обслуживания при установлении соединения, отсутствующая в сетях Х.25 и пробивающая себе дорогу в сетях TCP/IP в форме экспериментального протокола RSVP, который пока не поддерживается поставщиками услуг Internet. В технологии frame relay заказ и поддержание качества обслуживания встроен в технологию.

    Для каждого виртуального соединения определяется несколько параметров, влияющих на качество обслуживания.

    · CIR (Committed Information Rate) - согласованная информационная скорость, с которой сеть будет передавать данные пользователя.

    · Be (Committed Burst Size) - согласованный объем пульсации, то есть максимальное количество байтов, которое сеть будет передавать от этого пользователя за интервал времени Т.

    · Be (Excess Burst Size) - дополнительный объем пульсации, то есть максимальное количество байтов, которое сеть будет пытаться передать сверх установленного значения Вс за интервал времени Т.

    Если эти величины определены, то время Т определяется формулой: Т =Bc/CIR. Можно задать значения CIR и Т, тогда производной величиной станет величина всплеска трафика Вс.

    Соотношение между параметрами CIR, Be, Be и Т иллюстрирует рис. 6.27.

    https://studizba.space/z.php?f=/uploads/lectures/informatika-i-programmirovanie/kompyuternye-seti-i-telekommunikacii/files/2-seti-frame-relay.jpg

    Рис. 6.27. Реакция сети на поведение пользователя: R - скорость канала доступа; f1-f4 кадры

    Гарантий по задержкам передачи кадров технология frame relay не дает, оставляя эту услугу сетям АТМ.

    Основным параметром, по которому абонент и сеть заключают соглашение при установлении виртуального соединения, является согласованная скорость передачи данных. Для постоянных виртуальных каналов это соглашение является частью контракта на пользование услугами сети. При установлении коммутируемого виртуального канала соглашение о качестве обслуживания заключается автоматически с помощью протокола Q.931/933 — требуемые параметры CIR, Вс и Be передаются в пакете запроса на установление соединения.

    Так как скорость передачи данных измеряется на каком-то интервале времени, то интервал Т и является таким контрольным интервалом, на котором проверяются условия соглашения. В общем случае пользователь не должен за этот интервал передать в сеть данные со средней скоростью, превосходящей CIR. Если же он нарушает соглашение, то сеть не только не гарантирует доставку кадра, но помечает этот кадр признаком DE(Discard Eligibility), равным 1, то есть как кадр, подлежащий удалению. Однако кадры, отмеченные таким признаком, удаляются из сети только в том случае, если коммутаторы сети испытывают перегрузки. Если же перегрузок нет, то кадры с признаком DE=1 доставляются адресату.

    Такое щадящее поведение сети соответствует случаю, когда общее количество данных, переданных пользователем в сеть за период Т, не превышает объема Все. Если же этот порог превышен, то кадр не помечается признаком DE, а немедленно удаляется из сети.

    На рис. 6.27 изображен случай, когда за интервал времени Т в сеть по виртуальному каналу поступило 5 кадров. Средняя скорость поступления информации в сеть составила на этом интервале R бит/с, и она оказалась выше CIR. Кадры f1, f2 и f3 доставили в сеть данные, суммарный объем которых не превысил порог Вс, поэтому эти кадры ушли дальше транзитом с признаком DE=0. Данные кадра 4, прибавленные к данным кадров f1, f2 и f3, уже превысили порог Вс, но еще не превысили порога Все, поэтому кадр f4 также ушел дальше, но уже с признаком DE=1. Данные кадра f5, прибавленные к данным предыдущих кадров, превысили порог Все, поэтому этот кадр был удален из сети.

    Для контроля соглашения о параметрах качества обслуживания все коммутаторы сети frame relay выполняют так называемый алгоритм «дырявого ведра » (Leaky Bucket). Алгоритм использует счетчик С поступивших от пользователя байт. Каждые Т секунд этот счетчик уменьшается на величину Вс (или же сбрасывается в 0, если значение счетчика меньше, чем Вс). Все кадры, данные которых не увеличили значение счетчика свыше порога Вс, пропускаются в сеть со значением признака DE=0. Кадры, данные которых привели к значению счетчика, большему Вс, но меньшему Все, также передаются в сеть, но с признаком DE=1. И наконец, кадры, которые привели к значению счетчика, большему Все, отбрасываются коммутатором.

    Пользователь может договориться о включении не всех параметров качества обслуживания на данном виртуальном канале, а только некоторых.

    Например, можно использовать только параметры CIR и Вс. Этот вариант дает более качественное обслуживание, так как кадры никогда не отбрасываются коммутатором сразу. Коммутатор только помечает кадры, которые превышают порог Вс за время Т, признаком DE=1. Если сеть не сталкивается с перегрузками, то кадры такого канала всегда доходят до конечного узла, даже если пользователь постоянно нарушает договор с сетью.

    Популярен еще один вид заказа на качество обслуживания, при котором оговаривается только порог Be, а скорость CIR полагается равной нулю. Все кадры такого канала сразу же отмечаются признаком DE=1, но отправляются в сеть, а при превышении порога Be они отбрасываются. Контрольный интервал времени Т в этом случае вычисляется как Be/R, где R — скорость доступа канала.

    На рис. 6.28 приведен пример сети frame relay с пятью удаленными региональными отделениями корпорации. Обычно доступ к сети осуществляется каналами с большей чем CIR пропускной способностью. Но при этом пользователь платит не за пропускную способность канала, а за заказанные величины CIR, Bc и Be. Так, при использовании в качестве канала доступа канала Т1 и заказа службы со скоростью CIR, равной 128 Кбит/с, пользователь будет платить только за скорость 128 Кбит/с, а скорость канала Т1 в 1,544 Мбит/с будет влиять на верхнюю границу возможной пульсации Все.

    https://studizba.space/z.php?f=/uploads/lectures/informatika-i-programmirovanie/kompyuternye-seti-i-telekommunikacii/files/3-seti-frame-relay.jpg

    Рис. 6.28. Пример использования сети frame relay

    Параметры качества обслуживания могут быть различными для разных направлений виртуального канала. Так, на рис. 6.28 абонент 1 соединен с абонентом 2виртуальным каналом с DLCI=136. При направлении от абонента 1 к абоненту 2 канал имеет среднюю скорость 128 Кбит/с с пульсациями Вс=256 Кбит (интервал Т составил 1 с) и Ве=64 Кбит. А при передаче кадров в обратном направлении средняя скорость уже может достигать значения 256 Кбит/с с пульсациями Вс=512 Кбит и Ве=128 Кбит.

    Механизм заказа средней пропускной способности и максимальной пульсации является основным механизмом управления потоками кадров в сетях frame relay. Соглашения должны заключаться таким образом, чтобы сумма средних скоростей виртуальных каналов не превосходила возможностей портов коммутаторов. При заказе постоянных каналов за это отвечает администратор, а при установлении коммутируемых виртуальных каналов - программное обеспечение коммутаторов. При правильно взятых на себя обязательствах сеть борется с перегрузками путем удаления кадров с признаком DE=1 и кадров, превысивших порог Все.

     

    7.Достоинства сети Frame Relay:

    ·         высокая надежность работы сети;

    ·         обеспечивает передачу чувствительный к временным задержкам трафик (голос, видеоизображение).

    8.Недостатки сети Frame Relay:

    ·         высокая стоимость качественных каналов связи;

    ·         не обеспечивается достоверность доставки кадров.

     

     

     

     

     

     

    Заключение

    В сети Frame Relay используется два типа виртуальных каналов: постоянные (PVC) и коммутируемые виртуальные каналы. На канальном уровне поток данных структурируется на кадры, поле данных в кадре имеет переменную величину, но не более 4096 байт. Канальный уровень реализуется протоколом LAP-F. Протокол LAP-F имеет два режима работы: основной и управляющий. В основном режиме кадры передаются без преобразования и контроля.

    В поле заголовка кадра имеется информация, которая используется для управления виртуальным соединением в процессе передачи данных. Виртуальному соединению присваивается определенный номер (DLCI). DLCI (Data Link Connection Identifier) – идентификатор соединения канала данных.Каждый кадр канального уровня содержит номер логического соединения, который используется для маршрутизации и коммутации трафика.При этом контроль правильности передачи данных от отправителя получателю осуществляется на более высоком уровне модели OSI.Коммутируемые виртуальные каналы используются для передачи импульсного трафика между двумя устройствами DTE. Постоянные виртуальные каналы применяются для постоянного обмена сообщениями между двумя устройствами DTE.

    Процесс передачи данных через коммутируемые виртуальные каналы осуществляется следующим образом:

    ·         установление вызова – образуется коммутируемый логический канал между двумя DTE;

    ·         передача данных по установленному логическому каналу;

    ·         режим ожидания, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит;

    ·         завершение вызова – используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

    Процесс передачи данных через предварительно установленные постоянные виртуальные каналы осуществляется следующим образом:

    ·         передача данных по установленному логическому каналу;

    ·         режим ожидания, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит.

     

    Список использованной литературы

    https://ru.wikipedia.org/wiki/Frame_relay


    написать администратору сайта