Искусственный интеллект. Системы, относящиеся к системам ии в настоящее время
Скачать 275 Kb.
|
САПР иностранных разработчиковБесплатные САПР иностранных разработчиков с открытым исходным кодом
Платные САПР иностранных разработчиков
Перспективы развития искусственного интеллекта В современном мире рост производительности программиста практически происходит только в тех случаях, когда часть интеллектуальной нагрузки берут на себя компьютеры. Одним из способов достигнуть максимального прогресса в этой области является "искусственный интеллект" (ИИ), когда компьютер не только берет на себя однотипные, многократно повторяющиеся операции, но и сам может обучаться. Кроме того, создание полноценного "искусственного интеллекта" открывает перед человечеством новые горизонты развития. Целью изучения этих вопросов является подготовка специалистов в области автоматизации сложноформализуемых задач, которые до сих пор считаются прерогативой человека. Данная дисциплина необходима для приобретения знаний о способах мышления человека, а также о методах их реализации на компьютере. Из сказанного выше вытекает основная философская проблема в области ИИ — возможность или невозможность моделирования мышления человека. В случае, если когда-либо будет получен отрицательный ответ на этот вопрос, все остальные вопросы курса не будут иметь ни малейшего смысла. Следовательно, начиная исследование ИИ, заранее предполагается положительный ответ. Ниже приведены несколько соображений, которые подводят к данному ответу.
Способность к самовоспроизведению долгое время считалась прерогативой живых организмов. Однако некоторые явления, происходящие в неживой природе (например, рост кристаллов, синтез сложных молекул копированием), очень похожи на самовоспроизведение. В начале 1950-х годов Дж. фон Нейман занялся основательным изучением самовоспроизведения и заложил основы математической теории "самовоспроизводящихся автоматов". Он же теоретически доказал возможность их создания. Есть также различные неформальные доказательства возможности самовоспроизведения, но для программистов самым ярким доказательством, пожалуй, является существование компьютерных вирусов.
Независимо от того, в какой форме и какими средствами предписание будет первоначально выражено, его можно будет задать также в виде машинной программы. Однако не следует думать, что вычислительные машины и роботы могут в принципе решать любые задачи. Алгоритмическая универсальность ЭВМ означает, что на них можно программно реализовывать (т. е. представить в виде машинной программы) любые алгоритмы преобразования информации — будь то вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем или композиции мелодий. При этом имеют в виду, что процессы, порождаемые этими алгоритмами, являются потенциально осуществимыми, т. е. что они осуществимы в результате конечного числа элементарных операций. Практическая осуществимость алгоритмов зависит от имеющихся в нашем распоряжении средств, которые могут меняться с развитием техники. Так, в связи с появлением быстродействующих ЭВМ стали практически осуществимыми и такие алгоритмы, которые ранее были осуществимыми только потенциально. Однако свойство алгоритмической универсальности не ограничивается констатацией того, что для всех известных алгоритмов оказывается возможной их программная реализация на ЭВМ. Анализ разнообразных задач привел математиков к замечательному открытию. Было строго доказано существование таких типов задач, для которых невозможен единый эффективный алгоритм, решающий все задачи данного типа; в этом смысле невозможно решение задач такого типа и с помощью вычислительных машин. Этот факт способствует лучшему пониманию того, что могут делать машины и чего они не могут сделать. В самом деле, утверждение об алгоритмической неразрешимости некоторого класса задач является не просто признанием того, что такой алгоритм нам не известен и никем еще не найден. Такое утверждение представляет собой одновременно и прогноз на все будущие времена о том, что подобного рода алгоритм нам неизвестен и никем не будет указан или, иными словами, что он не существует. Как же действует человек при решении таких задач? Похоже, что он просто игнорирует их, что, однако, не мешает ему жить дальше. Другим путем является сужение условий универсальности задачи, когда она решается только для определенного подмножества начальных условий. И еще один путь заключается в том, что человек методом "научного тыка" расширяет множество доступных для себя элементарных операций (например, создает новые материалы, открывает новые месторождения или типы ядерных реакций). Следующим философским вопросом ИИ является цель создания. Допустим, что человек сумел создать интеллект, превышающий свой собственный (пусть не качеством, так количеством). Что теперь будет с человечеством? Какую роль будет играть человек? Для чего он теперь нужен? Нужно ли в принципе создание ИИ? Приемлемым ответом на эти вопросы является концепция "усилителя интеллекта" (УИ). Уже сейчас созданы и неживые УИ — например, люди не могли бы предсказать погоду без компьютеров, а при полетах космических кораблей с самого начала применялись бортовые счетно-решающие устройства. Кроме того, человек уже давно использует усилители силы (УС) — понятие, во многом аналогичное УИ. В качестве усилителей силы ему служат автомобили, краны, электродвигатели, прессы, пушки, самолеты и многое другое. Перспективные технологии 1. Нейронные сети. Это направление стабильно держится на первом месте. Продолжается совершенствование алгоритмов обучения и классификации в масштабе реального времени, обработки естественных языков, распознавания изображений, речи, сигналов, а также создание моделей интеллектуального интерфейса, подстраивающегося под пользователя. Среди основных прикладных задач, решаемых с помощью нейронных сетей, - финансовое прогнозирование, извлечение информации из данных, диагностика систем, контроль за деятельностью сетей, шифрование данных. В последние годы идет усиленный поиск эффективных методов синхронизации работы нейронных сетей на параллельных устройствах. 2. Эволюционные вычисления. На развитие сферы эволюционных вычислений (ЭВ; автономное и адаптивное поведение компьютерных приложений и робототехнических устройств) значительное влияние оказали прежде всего инвестиции в нанотехнологии. ЭВ затрагивают практические проблемы самосборки, самоконфигурирования и самовосстановления систем, состоящих из множества одновременно функционирующих узлов. При этом удается применять научные достижения из области цифровых автоматов. Другой аспект ЭВ - использование для решения повседневных задач автономных агентов в качестве персональных секретарей, управляющих личными счетами, ассистентов, отбирающих нужные сведения в сетях с помощью поисковых алгоритмов третьего поколения, планировщиков работ, личных учителей, виртуальных продавцов и т. д. Сюда же относится робототехника и все связанные с ней области. Основные направления развития - выработка стандартов, открытых архитектур, интеллектуальных оболочек, языков сценариев/запросов, методологий эффективного взаимодействия программ и людей. Модели автономного поведения предполагается активно внедрять во всевозможные бытовые устройства, способные убирать помещения, заказывать и готовить пищу, водить автомобили и т. п. В дальнейшем для решения сложных задач (быстрого исследования содержимого Сети, больших массивов данных наподобие геномных) будут использоваться коллективы автономных агентов. Для этого придется заняться изучением возможных направлений эволюции подобных коллективов, планирования совместной работы, способов связи, группового самообучения, кооперативного поведения в нечетких средах с неполной информацией, коалиционного поведения агентов, объединяющихся “по интересам”, научиться разрешать конфликты взаимодействия и т. п. Особняком стоят социальные аспекты - как общество будет на практике относиться к таким сообществам интеллектуальных программ. 3. На третьем - пятом местах (по популярности) располагаются большие группы различных технологий. 3.1 Нечеткая логика Системы нечеткой логики активнее всего будут применяться преимущественно в гибридных управляющих системах. 3.2 Обработка изображений Продолжится разработка способов представления и анализа изображений (сжатие, кодирование при передаче с использованием различных протоколов, обработка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений. Дальнейшее развитие получат средства поиска, индексирования и анализа смысла изображений, согласования содержимого справочных каталогов при автоматической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов. 3.3. Экспертные системы Спрос на экспертные системы остается на достаточно высоком уровне. Наибольшее внимание сегодня привлечено к системам принятия решений в масштабе времени, близком к реальному, средствам хранения, извлечения, анализа и моделирования знаний, системам динамического планирования. 3.4. Интеллектуальные приложения Рост числа интеллектуальных приложений, способных быстро находить оптимальные решения комбинаторных проблем (возникающих, например, в транспортных задачах), связан с производственным и промышленным ростом в развитых странах. 3.5. Распределенные вычисления Распространение компьютерных сетей и создание высокопроизводительных кластеров вызвали интерес к вопросам распределенных вычислений - балансировке ресурсов, оптимальной загрузке процессоров, самоконфигурированию устройств на максимальную эффективность, отслеживанию элементов, требующих обновления, выявлению несоответствий между объектами сети, диагностированию корректной работы программ, моделированию подобных систем. 3.6. ОС РВ Появление автономных робототехнических устройств повышает требования к ОС реального времени - организации процессов самонастройки, планирования обслуживающих операций, использования средств ИИ для принятия решений в условиях дефицита времени. 3.7. Интеллектуальная инженерия Особую заинтересованность в ИИ проявляют в последние годы компании, занимающиеся организацией процессов разработки крупных программных систем (программной инженерией). Методы ИИ все чаще используются для анализа исходных текстов и понимания их смысла, управления требованиями и выработкой спецификаций, проектирования, кодогенерации, верификации, тестирования, оценки качества, выявления возможности повторного использования, решения задач на параллельных системах. Программная инженерия постепенно превращается в так называемую интеллектуальную инженерию, рассматривающую более общие проблемы представления и обработки знаний (пока основные усилия в интеллектуальной инженерии сосредоточены на способах превращения информации в знания). 3.8. Самоорганизующиеся СУБД Самоорганизующиеся СУБД будут способны гибко подстраиваться под профиль конкретной задачи и не потребуют администрирования. 4. Следующая по популярности группа технологий ИИ 4.1. Автоматический анализ естественных языков (лексический, морфологический, терминологический, выявление незнакомых слов, распознавание национальных языков, перевод, коррекция ошибок, эффективное использование словарей). 4.2. Высокопроизводительный OLAP-анализ и извлечение информации из данных, способы визуального задания запросов. 4.3. Медицинские системы, консультирующие врачей в экстренных ситуациях, роботы-манипуляторы для выполнения точных действий в ходе хирургических операций. 4.4. Создание полностью автоматизированных киберзаводов, гибкие экономные производства, быстрое прототипирование, планирование работ, синхронизация цепочек снабжения, авторизации финансовых транзакций путем анализа профилей пользователей. 5. Небольшое число конференций посвящено выработке прикладных методов, направленных на решение конкретных задач промышленности в области финансов, медицины и математики. Традиционно высок интерес к ИИ в среде разработчиков игр и развлекательных программ (это отдельная тема). Среди новых направлений их исследований - моделирование социального поведения, общения, человеческих эмоций, творчества. ИИ в Стране восходящего солнца Профиль японских конференций (а этой стране принадлежит немало оригинальных и уникальных достижений в области ИИ), не сильно отличается от общемирового. Тем интереснее эти отличия - на них сосредоточены значительные объемы инвестиций государственных и частных японских организаций. Среди направлений, более популярных в Японии в сравнении с европейскими и американскими школами ИИ, отметим следующие: создание и моделирование работы э-рынков и э-аукционов, биоинформатика (электронные модели клеток, анализ белковой информации на параллельных компьютерах, ДНК-вычислители), обработка естественных языков (самообучающиеся многоязычные системы распознавания и понимания смысла текстов), Интернет (интеграция Сети и всевозможных датчиков реального времени в жилых домах, интеллектуальные интерфейсы, автоматизация рутинных работ на основе формализации прикладных и системных понятий Интернета, итерационные технологии выделения нужных сведений из больших объемов данных), робототехника (машинное обучение, эффективное взаимодействие автономных устройств, организация движения, навигация, планирование действий, индексация информации, описывающей движение), способы представления и обработки знаний (повышение качества знаний, методы получения знаний от людей-экспертов, поиск и извлечение информации из данных, решение на этой основе задач реального мира - например, управления документооборотом). Много работ посвящено алгоритмам логического вывода, обучению роботов, планированию ими действий. Военные технологии Исследования в области нейронных сетей, позволяющих получить хорошие (хотя и приближенные) результаты при решении сложных задач управления, часто финансирует военное научное агентство DARPA. Пример - проект Smart Sensor Web, который предусматривает организацию распределенной сети разнообразных датчиков, синхронно работающих на поле боя. Каждый объект (стоимостью не более $300) в такой сети представляет собой источник данных - визуальных, электромагнитных, цифровых, инфракрасных, химических и т. п. Проект требует новых математических методов решения многомерных задач оптимизации. Ведутся работы по автоматическому распознаванию целей, анализу и предсказанию сбоев техники по отклонениям от типовых параметров ее работы (например, по звуку). Операция “Буря в пустыне” стала стимулом к развитию экспертных систем с продвинутым ИИ, применяемым в области снабжения. На разработках, связанных с технологиями машинного зрения, основано все высокоточное оружие. В СМИ нередко можно прочитать о грядущих схватках самостоятельно действующих армий самоходных машин-роботов и беспилотных самолетов. Однако существует ряд нерешенных научных проблем, не позволяющих в ближайшие десятилетия превратить подобные прогнозы в реальность. Прежде всего это недостатки систем автоматического распознавания, не способных правильно анализировать видеоинформацию в масштабе реального времени. Не менее актуальны задачи разрешения коллизий в больших сообществах автономных устройств, абсолютно точного распознавания своих и чужих, выбора подлежащих уничтожению целей, алгоритмов поведения в незнакомой среде и т. п. Поэтому на практике военные пытаются достичь менее масштабных целей. Значительные усилия вкладываются в исследования по распознаванию речи, создаются экспертные и консультационные системы, призванные автоматизировать рутинные работы и снизить нагрузку на пилотов. Нейронные сети достаточно эффективно применяются для обработки сигналов сонаров и отличения подводных камней от мин. Генетические алгоритмы используются для эвристического поиска решения уравнений, определяющих работу военных устройств (систем ориентации, навигации), а также в задачах распознавания - для разделения искусственных и естественных объектов, распознавания типов военных машин, анализа изображения, получаемого от камеры с низким разрешением или инфракрасных датчиков. Список литературы1. Материалы сайта http://ru.wikipedia.org/. 2. Левин Р. и др. Практическое введение в технологию искусственного интеллекта и экспертных систем с иллюстрациями на Бейсике.- М., 1991. 3. Шихов Е. Варианты реализации искусственного интеллекта – ресурс Интернета, http://neural.narod.ru/, 2002. 4. Квасный Р. Искусственный интеллект – ресурс Интернета, http://neural.narod.ru/, 2001. 5. Малюх В. Н. Введение в современные САПР: Курс лекций. — М.: ДМК Пресс, 2010. — 192 с. — ISBN 978-5-94074-551-8
|