|
генная инженерия. Что такое генная инженерия и что она изучает. Сложно найти в современном мире человека, который ничего не слышал бы об успехах генной инженерии
Сегодня она является одним из наиболее перспективных путей развития биотехнологий, совершенствования сельскохозяйственного производства, медицины и ряда других отраслей.
Что такое генная инженерия? - Как известно, наследственные признаки любого живого существа записаны в каждой клетке организма в виде совокупности генов – элементов сложных белковых молекул РНК и ДНК. Вводя в геном живого существа чужеродный ген, можно изменить свойства получаемого организма, причём в нужную сторону: сделать сельскохозяйственную культуру более устойчивой к морозу и болезням, придать растению новые свойства и т.д.
- Организмы, полученные в результате такой переделки, называются генно-модифицированными, или трансгенными, а научная дисциплина, занимающаяся исследованием модификаций генома и разработкой трансгенных технологий – генетической или генной инженерией.
Объекты генной инженерии - Наиболее часто объектами для исследования генной инженерии становятся микроорганизмы, клетки растений и низших животных, однако ведутся исследования и на клетках млекопитающих, и даже на клетках человеческого организма. Как правило, непосредственным объектом исследования является молекула ДНК, очищенная от прочих клеточных веществ. При помощи энзимов ДНК расщепляется на отдельные отрезки, причём важно уметь распознавать и выделять нужный отрезок, переносить его при помощи энзимов и встраивать в структуру другой ДНК.
- Современные методики уже позволяют достаточно свободно манипулировать отрезками генома, размножать нужный участок наследственной цепи и вставлять его на место другого нуклеотида в ДНК реципиента. Накоплен достаточно большой опыт и собрана немалая информация по закономерностям строения наследственных механизмов. Как правило, преобразованиям подвергаются сельскохозяйственные растения, что уже позволило существенно повысить результативность основных продовольственных культур.
- невозможно скрещивать неродственные виды живых существ;
- процесс рекомбинации генетических признаков остаётся неуправляемым, и необходимые качества у потомства появляются в результате случайных комбинаций, при этом очень большой процент потомства признаётся неудачным и отбрасывается в ходе селекции;
- точно задать нужные качества при скрещивании невозможно;
- селекционный процесс занимает годы и даже десятилетия
К середине ХХ века традиционные методы селекции перестали устраивать учёных, так как это направление обладает рядом серьёзных ограничений: Естественный механизм сохранения наследственных признаков является чрезвычайно стойким, и даже появление потомства с нужными качествами не даёт гарантии сохранения этих признаков в последующих поколениях.
Генная инженерия позволяет преодолеть все вышеперечисленные затруднения. С помощью трансгенных технологий можно создавать организмы с заданными свойствами, заменяя отдельные участки генома другими, взятыми у живых существ, принадлежащих к другим видам. При этом сроки создания новых организмов существенно сокращаются. Необязательно закреплять нужные признаки, делая их наследуемыми, так как всегда есть возможность генетически модифицировать следующие партии, поставив процесс буквально на поток.
Этапы создания трансгенного организма - Выделение изолированного гена с нужными свойствами. Сегодня для этого существуют достаточно надёжные технологии, есть даже специально подготовленные библиотеки генов.
- Ввод гена в вектор для переноса. Для этого создаётся специальная конструкция – трансген, с одним или несколькими отрезками ДНК и регуляторными элементами, который встраивается в геном вектора и подвергается клонированию при помощи лигаз и рестриктаз. В качестве вектора обычно используются кольцеобразные бактериальные ДНК – плазмиды.
- Встраивание вектора в организм реципиента. Этот процесс скопирован с аналогичного природного процесса встраивания ДНК вируса или бактерии в клетки носителя и действует таким же образом.
- Молекулярное клонирование. При этом клетка, подвергшаяся модификации, успешно делится, производя множество новых дочерних клеток, которые содержат изменённый геном и синтезируют белковые молекулы с заданными свойствами.
- Отбор ГМО. Последний этап ничем не отличается от обычной селекционной работы.
Безопасна ли генная инженерия? Вопрос, насколько безопасны трансгенные технологии, периодически поднимается как в научной среде, так и в СМИ, далёких от науки. Однозначного ответа на него нет до сих пор. Во-первых, генная инженерия остаётся ещё достаточно новым направлением биотехнологий, и статистика, позволяющая делать объективные выводы об этой проблеме, пока что не успела накопиться. Во-вторых, огромные вложения в генную инженерию со стороны транснациональных корпораций, занимающихся производством продуктов питания, могут служить дополнительной причиной отсутствия серьёзных исследований. Впрочем, в законодательствах многих стран появились нормы, обязывающие производителей указывать наличие продуктов из ГМО на упаковке товаров пищевой группы. В любом случае, генная инженерия уже продемонстрировала высокую результативность своих технологий, а её дальнейшее развитие обещает людям ещё больше успехов и достижений. |
|
|