Курсовая транзисторный ключ. Транзисторный ключ. Содержание Введение 1 Теоретическая часть Характеристика транзисторного ключа Статические режимы работы транзисторного ключа Включение транзисторного ключа Выключение
Скачать 99.77 Kb.
|
Содержание Введение 1 Теоретическая часть Характеристика транзисторного ключа Статические режимы работы транзисторного ключа Включение транзисторного ключа Выключение транзисторного ключа 2 Практическая часть Заключение Список используемой литературы Введение Актуальность темы. С развитием электронной импульсной техники транзисторный ключ в том или ином виде применяются практически в любом электронном устройстве. Более того, преимущественно количество микросхем состоят из десятков, сотен и миллионов транзисторных ключей. А в цифровой технике вообще не обходятся без них. В обще современный мир электроники не мыслим без рассмотренного в данной статье устройства. При работе в импульсных схемах электронные приборы (лампы, транзисторы, тиристоры и др ) имеют два рабочих состояния. В одном из них электронный прибор закрыт, ток через него практически не проходит и его внутреннее сопротивление Ri велико; в другом состоянии прибор открыт, ток в выходной цепи имеет заданное значение, а внутреннее сопротивление мало. Переход из одного состояния в другое сопровождается переходным процессом, время которого определяет длительность фронта и среза импульса. Такой режим работы электронного прибора называется ключевым. 1 Теоретическая часть 1.1 Характеристика транзисторного ключа Есть несколько основных режимов работы транзисторного ключа: нормальный активный режим, режим насыщения, режим отсечки и активный инверсный режим. Хотя схема транзисторного ключа – это в принципе схема транзисторного усилителя с общим эмиттером, по функциям и режимам эта схема отличается от типичного усилительного каскада. В ключевом применении транзистор служит быстродействующим ключом, и главными статическими состояниями являются два: транзистор закрыт и транзистор открыт. Запертое состояние – состояние разомкнутое, когда транзистор пребывает в режиме отсечки. Замкнутое состояние – состояние насыщения транзистора, или близкое к насыщению состояние, в этом состоянии транзистор открыт. Когда транзистор переключается из одного состояния в другое, это активный режим, при котором процессы в каскаде протекают нелинейно. Поведение ТК в статическом режиме полностью определяется статическими характеристиками транзистора. При их анализе обычно используют семейство выходных коллекторных характеристик и семейство входных характеристик. В режиме отсечки оба перехода биполярного транзистора смещены в обратном направлении. Различают режимы глубокой и неглубокой отсечек. Полярность их такова, что коллекторный и эмиттерный переходы смещены в обратном направлении. В этом режиме токи электродов транзистора имеют наименьшие значения, что характеризует разомкнутое состояние ТК. В режиме неглубокой отсечки модуль напряжения на одном из переходов меньше . Оба перехода смещены в обратном направлении. Однако токи электродов несколько больше, чем в режиме глубокой отсечки, и их значения существенно зависят от приложенного напряжения. Область глубокой отсечки практически совпадает с самой нижней кривой семейства коллекторных характеристик, которую иногда называют характеристикой отсечки. Падение напряжения на транзисторе мало и характеристика идет почти вертикально. Назовем эту линию линией отпирания. В идеальном аналоговом ключе линии отпирания и запирания совпадают с осями координат. В транзисторном ключе эти линии имеют небольшой наклон, а их точка пересечения не совпадает с началом координат. В итоге при конечном сигнале получается нулевое напряжение на выходе, а при нулевом сигнале соответственно конечное выходное напряжение. Таким образом, транзисторному прерывателю свойственны два вида погрешностей: сдвига и наклона. Влияние этих погрешностей уменьшается с увеличением входного сигнала. Общая погрешность невелика и, как видно из выходных характеристик, имеет разный знак в зависимости от полярности входного сигнала. Для количественной оценки погрешностей необходимо знать координаты точки с и дифференциальные сопротивления обеих характеристик. 1.2 Статические режимы работы транзисторного ключа В силу ряда неоспоримых преимуществ (отсутствие накала, малые габариты, малая потребляемая мощность, высокая надежность) транзисторы полностью заменили электронные лампы в маломощных импульсных схемах. Более того, использование транзисторов позволило создать такие схемы, реализация которых с помощью ламп принципиально невозможна. В импульсных схемах используются германиевые и кремниевые, биполярные и полевые транзисторы. В дальнейшем будем рассматривать схемы на кремниевых транзисторах n-p-n-типа, поскольку они наиболее широко применяются. Рисунок 1 – Схема транзисторного ключа с общим эмиттером В большинстве случаев используют транзисторный ключ с общим эмиттером (ОЭ), в котором нагрузочный резистор включен в коллекторную цепь (рис. 7.3). (Если в схеме используется не п-р-п-, а p-n-p-транзистор, то на коллектор подается отрицательное напряжение.) Напряжения и токи, соответствующие закрытому и открытому состояниям транзистора, могут быть определены с помощью входных и выходных статических характеристик транзистора, включенного по схеме ОЭ (рис. 7.4). Режим отсечки. Закрытому состоянию транзистора соответствует режим отсечки, при котором на коллекторном и эмиттер-ном переходах действуют обратные напряжения. Через переходы проходят токи, обусловленные процессами тепловой генерации носителей заряда в объеме полупроводника. При включении транзистора по схеме ОЭ в режиме отсечки в коллекторной цепи протекает ток, близкий обратному току коллекторного перехода. Этот ток закрытого кремниевого транзистора ничтожно мал (менее 1 нА), поэтому его обычно в расчетах не учитывают и uкэ в) а) Рисунок 2 – Входная (а) и выходная (в) характеристики транзисторного ключа ОЭ Входное и выходное сопротивления закрытого кремниевого транзистора, определяемые сопротивлениями обратносмещенных коллекторного и эмиттерного переходов, при расчетах принимают бесконечно большими. Ток коллекторного перехода закрытого германиевого транзистора на несколько порядков больше, чем ток кремниевого. Поэтому при анализе импульсных схем с германиевыми транзисторами его учитывают и транзистор в режиме отсечки представляют источником тока, действующим в цепи коллектор– база. Прямые ветви входных статических характеристик в первом приближении представляются экспоненциальной зависимостью тока базы от напряжения база – эмиттер. Следовательно, сколь угодно малое увеличение напряжения uбэ приводит к росту Iб. Однако ток базы становится заметным лишь при определенном значении и uбэ = Uотп. Поэтому при расчетах импульсных схем удобно пользоваться напряжением отпирания (открывания) Uотп. Режиму отсечки соответствует точка А на статических характеристиках транзистора. Режим насыщения. Транзистор открывается, когда на вход подается положительное напряжение, и при условии uбэ > Uотп. коллекторный и базовый токи увеличиваются. По мере нарастания тока базы растет коллекторный ток и уменьшается коллекторное напряжение uкэ за счет падения напряжения на резисторе а также уменьшается обратное напряжение, приложенное к коллекторному переходу. Пока при увеличении тока на коллекторном переходе имеется обратное напряжение, транзистор находится в активном режиме и имеет место следующее соотношение между токами: При некотором значении базового тока напряжение на коллекторном переходе становится равным нулю и дальнейшее увеличение тока Iб, а следовательно, и тока Iк приводит к появлению прямого напряжения на коллекторном переходе, т. е. потенциал базы относительно коллектора становится положительным. В прямом направлении оказывается включенным не только эмиттерный, но и коллекторный переход. Это приводит к тому, что не все носители, инжектированные эмиттером и дошедшие до коллекторного перехода, перехватываются им. Навстречу потоку неосновных носителей, идущих из базы в коллектор, движется поток таких же носителей из коллектора в базу, и суммарный их ток определяется разностью этих потоков. В результате коллекторный ток при дальнейшем увеличении тока базы перестает расти. Транзистор переходит в режим насыщения, который характеризуется постоянством тока коллектора В связи с тем что в режиме насыщения коллекторный переход не осуществляет полной экстракции носителей из базы, там происходит их накопление и интенсивная рекомбинация и пропорциональная зависимость между токами Iб и Iк не выполняется. Напряжения на коллекторе и базе насыщенного транзистора остаются практически постоянными. Токи, протекающие во внешней цепи транзистора в насыщении, определяются следующими соотношениями: где UБ+, UП - напряжения источников питания базы и коллектора. Как видно, токи транзисторного ключа в режиме насыщения определяются внешними параметрами схемы и практически не зависят от характеристик-транзистора. Режиму насыщения соответствует точка В на статических характеристиках. Режим насыщения кремниевого транзистора определяется условием uкб = -Uотп При заданных коллекторном и базовом токах удобным для расчетов является критерий насыщенного состояния по току. Его можно установить, рассуждая так. Пропорциональная зависимость между токами Iб и Iк , справедливая для активного режима, сохраняется вплоть до отпирания коллекторного перехода. Следовательно, на границе активного режима и режима насыщения также имеет место соотношение где Iб гр - базовый ток, при котором транзистор входит в режим насыщения. Как было отмечено, дальнейшее увеличение базового тока не приводит к росту коллекторного тока. Таким образом, критерий насыщенного состояния транзистора можно записать в виде (1.1) Если в соотношение (7.1) подставить выражения для токов получим: В реальных условиях работы транзисторного ключа напряжения источников питания могут изменяться, имеет место также разброс сопротивлений резисторов и коэффициента передачи тока h21э. Это может привести к невыполнению неравенства (1.1), выходу транзистора из режима насыщения и соответственно к изменению коллекторного тока и выходного напряжения. Для обеспечения устойчивого режима работы транзисторного ключа параметры его рассчитывают таким образом, чтобы неравенство (1.1) выполнялось при изменениях в некоторых пределах входящих в него величин. Помехоустойчивость транзисторного ключа тем больше, чем выше коэффициент насыщения: Хотя для повышения помехоустойчивости желательно увеличивать коэффициент насыщения, однако следует помнить, что при этом растет время переключения транзисторного ключа. |