Реферат по информатике 1 курс. Реферат 1. Сообщения, данные, сигнал, атрибутивные свойства информации, показатели качества информации, формы представления информации. Системы передачи информации
Скачать 83.23 Kb.
|
Объем информации Vд (объемный подход).При реализации информационных процессов информация передается в виде сообщения, представляющего собой совокупность символов какого-либо алфавита. При этом каждый новый символ в сообщении увеличивает количество информации, представленной последовательностью символов данного алфавита. Если теперь количество информации, содержащейся в сообщении из одного символа, принять за единицу, то объем информации (данных) Vд в любом другом сообщении будет равен количеству символов (разрядов) в этом сообщении. Так как одна и та же информация может быть представлена многими разными способами (с использованием разных алфавитов), то и единица измерения информации (данных) соответственно будет меняться. Так, в десятичной системе счисления один разряд имеет вес, равный 10, и соответственно единицей измерения информации будет дит (десятичный разряд). В этом случае сообщение в виде п-разрядного числа имеет объем данных Vд = п дит. Например, четырехразрядное число 2009 имеет объем данных Vд = 4 дит. В двоичной системе счисления один разряд имеет вес, равный 2, и соответственно единицей измерения информации будет бит (bit (binary digit) – двоичный разряд). В этом случае сообщение в виде n-разрядного числа имеет объем данных Vд = п бит. Например, восьмиразрядный двоичный код 11001011 имеет объем данных Vд = 8 бит. В современной вычислительной технике наряду с минимальной единицей измерения данных бит широко используется укрупненная единица измерения байт, равная 8 бит. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=28). При работе с большими объемами информации для подсчета ее количества применяют более крупные единицы измерения: 1 Килобайт (Кбайт) = 1024 байт = 210 байт, 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт = 1 048 576 байт; 1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт = 1 073 741 824 байт; В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как: 1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт = 1 099 511 627 776 байт; 1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт = 1 125 899 906 842 624 байт. Следует обратить внимание, что в системе измерения двоичной (компьютерной) информации, в отличие от метрической системы, единицы с приставками «кило», «мега» и т. д. получаются путем умножения основной единицы не на 103 = 1000, 106 = 1 000 000 и т. д., а на 210 = 1024, 220 = 1 048 576 и т. д. Количество информации I (энтропийный подход).В теории информации и кодирования принят энтропийный подход к измерению информации. Этот подход основан на том, что факт получения информации всегда связан с уменьшением разнообразия или неопределенности (энтропии) системы. Исходя из этого, количество информации в сообщении определяется как мера уменьшения неопределенности состояния данной системы после получения сообщения. Неопределенность может быть интерпретирована в смысле того, насколько мало известно наблюдателю о данной системе. Как только наблюдатель выявил что-нибудь в физической системе, энтропия системы снизилась, так как для наблюдателя система стала более упорядоченной. Таким образом, при энтропийном подходе под информацией понимается количественная величина исчезнувшей в ходе какого-либо процесса (испытания, измерения и т.д.) неопределенности. При этом в качестве меры неопределенности вводится энтропия Н, а количество информации равно: I = Hapr – Haps где, Hapr – априорная энтропия о состоянии исследуемой системы или процесса; Haps – апостериорная энтропия. Апостериори (от лат. a posteriori – из последующего) – происходящее из опыта (испытания, измерения). Априори (от лат. a priori – из предшествующего) – понятие, характеризующее знание, предшествующее опыту (испытанию), и независимое от него. В случае, когда в ходе испытания имевшаяся неопределенность снята (получен конкретный результат, т. е. Н = 0), количество полученной информации совпадает с первоначальной энтропией I = Hapr Рассмотрим в качестве исследуемой системы дискретный источник информации (источник дискретных сообщений), под которым будем понимать физическую систему, имеющую конечное множество возможных состояний {аi}, i = . Все множество А = {a1, a2, ..., аn} состояний системы в теории информации называют абстрактным алфавитом или алфавитом источника сообщений. Отдельные состояния a1, а2,..., аn называют буквами или символами алфавита. Такая система может в каждый момент времени случайным образом принять одно из конечных множеств возможных состояний ai. При этом говорят, что различные состояния реализуются вследствие выбора их источником. Получатель информации (сообщения) имеет определенное представление о возможных наступлениях некоторых событий. Эти представления в общем случае недостоверны и выражаются вероятностями, с которыми он ожидает то или иное событие. Общая мера неопределенности (энтропия) характеризуется некоторой математической зависимостью от этих вероятностей, количество информации в сообщении определяется тем, насколько уменьшается мера неопределенности после получения сообщения. |