Защита лаб по физике. Справочник магнитного диска (кафедра общей физики) А. Г. Москаленко М. Н. Гаршина Е. П. Татьянина С. В. Бурова
Скачать 3.72 Mb.
|
Лабораторная работа№2.21 Дифракция светаТеоретический минимум
Контрольные задания Вариант 1 1. Явление дифракции света. Принцип Гюйгенса-Френеля. 2. Радиус четвертой зоны Френеля для плоского волнового фронта равен 3 мм. Определить радиус шестой зоны Френеля. 3. В центре дифракционной картины за круглым диском С в точке В, на экране наблюдается
4. Ширина центрального дифракционного максимума на экране, удаленного от щели на =1м, равна x=1 см. определите число длин волн, укладываемых на ширине щели. 5. Для того чтобы, дифракционная решетка с периодом d=20мкм могла разрешить дублет натрия (λ1=589,0 нм и λ2=589,6 нм) в спектре второго порядка, чему должна быть равной ее наименьшая длина? Вариант 2 1. Метод зон Френеля. 2. Плоская световая волна с длиной волны λ=600нм падает по нормали на экран с круглым отверстием. Определить диаметр отверстия, при котором в точке Р, лежащей на оси светового пучка на расстоянии b = 2 м от экрана, будет наблюдаться максимальная освещенность. 3. В центре дифракционной картины от круглого отверстия наблюдается светлое пятно, если число зон Френеля, укладывающихся в отверстии, равно 1) 1 2) 2 3) 3 4) 4 4. На узкую щель падает нормально монохроматический свет с длинной волны λ. Если угол отклонения света, соответствующий третьей световой дифракционной полосе, равен 30о, то чему равна ширина щели? 5. Определите длину дифракционной решетки, имеющей 50 штрихов на 1 мм, чтобы она могла разрешить две линии натрия λ1 = 580 нм и λ2 = 589,6 нм в спектре второго порядка. Вариант 3 1. Дифракция Френеля от круглого отверстия. 2. На экран, имеющий круглое отверстие, падает сферическая волна. Радиус отверстия совпадает с радиусом центральной зоны Френеля для точки А на оси отверстия. Как изменится интенсивность света в точке А, если экран убрать? 3. В центре дифракционной картины от круглого отверстия наблюдается темное пятно, если число зон Френеля, укладывающихся в отверстии, равно 1) 1 2) 2 3) 3 4) 4 4. На щель шириной 0,021 мм падает нормально монохроматический свет с длиной волны 0,63 мкм. Сколько дифракционных минимумов можно наблюдать на экране за этой щелью? 5. Дифракционная решетка освещена нормально падающим монохроматическим светом. Максимум второго порядка наблюдается под углом 14°. Под каким углом наблюдается максимум третьего порядка? Вариант 4 1. Дифракция Френеля от круглого диска. 2. Дифракционная картина наблюдается на расстоянии l от точечного источника монохроматического света с длиной волны λ = 600нм. На расстоянии a = 0,5l от источника помещена круглая непрозрачная преграда диаметром D=0,6см. Найдите расстояние l, если преграда закрывает для точки наблюдения только центральную зону Френеля. 3. В центре дифракционной картины от круглого отверстия наблюдается темное пятно, если число зон Френеля, укладывающихся в отверстии, равно 1) 1 2) 2 3) 3 4) 4 4. Ширина щели, освещаемой монохроматическим светом с длиной волны λ=0,45 мкм, равна 0,15 мм. С помощью линзы дифракционная картина наблюдается на экране в ее фокальной плоскости. Определить расстояние между минимумами первого порядка, если оптическая сила линзы D=5 дптр. 5. В спектре, даваемом дифракционной решеткой с d=2300нм, видны при =500 нм только два максимума (кроме центрального). Определите ширину щелей в этой решетке. Вариант 5 1. Дифракция Фраунгофера на щели. 2. На круглое отверстие d=0,4 см падает нормально параллельный пучок света с λ=500 нм. Точка наблюдения находится на оси отверстия на расстоянии 1 м от него. Темное или светлое пятно будет в центре дифракционной картины, если в точке наблюдения поместить экран? 3. За круглым отверстием в точке В, на экране наблюдается
4. На щель шириной 20 мкм падает нормально параллельный пучок монохроматического света с длиной волны 500 нм. Найти ширину изображения щели на экране, удаленном от щели на 1 м. 5. На дифракционной решетке с периодом d = 9 мкм и шириной щели b = 3 мкм не наблюдается максимум m -го порядка. Определить порядок этого максимума m. Вариант 6
2. Монохроматический свет (λ=0,6 мкм) падает нормально на круглое отверстие радиусом 0,6 мм. На каком расстоянии от отверстия находится точка наблюдения, если в отверстии укладываются три зоны Френеля? 3. В центре дифракционной картины от круглого отверстия наблюдается темное пятно, если число зон Френеля, укладывающихся в отверстии, равно 1) 1 2) 2 3) 3 4) 4 4. На щель падает пучок монохроматического света с длиной волны 500 нм. Ширина щели 6 мкм. Под каким углом будет наблюдаться третий дифракционный максимум? 5. Дифракционная решетка содержит 200 штрихов на миллиметр. На нее нормально падает монохроматический свет с длиной волны 0,6мкм. Максимум какого наибольшего порядка дает эта решетка? Вариант 7 1. Дифракция рентгеновских лучей на кристаллической решетке. Формула Вульфа-Брэгга. 2. Плоская световая волна длиной 0,5 мкм падает нормально на диафрагму с круглым отверстием диаметром 1см. На каком расстоянии от отверстия должна находиться точка наблюдения, чтобы отверстие открывало две зоны Френеля? 3. В центре дифракционной картины за круглым диском С в точке В, на экране наблюдается
4. На непрозрачную пластинку с узкой щелью падает нормально плоская монохроматическая волна (λ=600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму равен 200. Определить ширину щели. 5. Дифракционная решетка содержит 200 штрихов на миллиметр. На нее нормально падает монохроматический свет с длиной волны 0,6 мкм. Найти общее число дифракционных максимумов в спектре этой дифракционной решетки. |