Главная страница
Навигация по странице:

  • Опыт архитектурно-климатических достижений.

  • Режимы эксплуатации жилых зданий при различных типах погоды

  • Архитектурные проекты Нормана Фостера в столице Казахстана Астане

  • Аэродинамика высотных зданий. Опыт архитектурно-климатических достижений. Сооружения Нормана Фостера в Казахстане. Дарын Даниярулы РПЗС-18-1 СРС-1 Физика. Срс1 срс аэродинамика высотных зданий. Опыт архитектурноклиматических достижений. Сооружения Нормана Фостера в Казахстане студент 3 курса группы рпзс181 Даниярлы Д. Приняла Кулимова Р. Ю. Алматы 2020 Введение


    Скачать 260.18 Kb.
    НазваниеСрс1 срс аэродинамика высотных зданий. Опыт архитектурноклиматических достижений. Сооружения Нормана Фостера в Казахстане студент 3 курса группы рпзс181 Даниярлы Д. Приняла Кулимова Р. Ю. Алматы 2020 Введение
    АнкорАэродинамика высотных зданий. Опыт архитектурно-климатических достижений. Сооружения Нормана Фостера в Казахстане.
    Дата15.11.2021
    Размер260.18 Kb.
    Формат файлаdocx
    Имя файлаДарын Даниярулы РПЗС-18-1 СРС-1 Физика.docx
    ТипДокументы
    #272577
    страница2 из 2
    1   2

    В качестве примера приведены результаты математического моделирования аэродинамики высотного здания «MAIN TOWER», расположенного во Франкфурте-на-Майне, Германия [10]. Это здание достаточно сложной формы в плане представляет собой две башни – квадратную и круглую; его высота составляет 200 м.

    Преобладающими для Франкфурта-на-Майне являются ветры юго-западного и северо-восточного направлений. На рис. 8 и 9 показано распределение аэродинамических коэффициентов по периметру здания при воздействии юго-западного ветра. При воздействии на здание ветра северо-восточного направления характер распределения аэродинамических коэффициентов по периметру здания существенно меняется (рис. 10 и 11). В этом случае только на одном из фасадов (восточной ориентации) квадратной в плане башни здания «MAIN TOWER» аэродинамические коэффициенты положительны; на остальных фасадах они отрицательны.

    Значения аэродинамических коэффициентов, полученные методами математического моделирования, в дальнейшем были проверены при исследовании модели здания в аэродинамической трубе (экспериментальные значения отмечены на рис. 9 и 11 точками). Сравнение результатов, полученных методом математического моделирования и методом физического моделирования, показало их достаточно хорошую сопоставимость.

    Как было отмечено выше, режим обтекания здания воздушным потоком, помимо формы самого здания, существенно зависит от расположенных рядом других зданий и сооружений, особенностей рельефа местности и т. д. Это влияние особенно заметно, если окружающие объекты расположены на расстоянии, менее чем в пять раз превышающем высоту здания. В частности в городских условиях, сложившихся во Франкфурте-на-Майне, высотные здания, расположенные рядом в большом числе, оказывают друг на друга значительное влияние. Это взаимное влияние очень сложно рассчитать, и основным инструментом исследования становятся испытания в аэродинамической трубе.

    В результате при исследовании аэродинамики здания «MAIN TOWER» учитывалось взаимное влияние зданий, расположенных вдоль улицы Neuen Mainzer Strabe. Это высотные здания «Bu..rohaus an der alten Oper» (89 м), «Eurotheum» (110 м), «Garden Towers» (127 м), «Commerzbank» (259 м), «Taunustor Japan-Center» (115 м), а также прилегающая малоэтажная застройка (рис. 12).



    Рисунок 13.

    Расположение моделей зданий на поворотном столе

    1 — «Commerzbank» (259 м); 2 — Старое здание «Commerzbank» (110 м); 3 — «Taunustor Japan-Center» (115 м); 4 — «Garden Towers» (127 м); 5 — «MAIN TOWER» (200 м); 6 — Малоэтажная застройка (до 37 м);
    7 — «Eurotheum» (110 м); 8 — «Bu..rohaus an der alten Oper» (89 м)






    Рисунок 14. (подробнее)

    Схема типичного распределения воздушных потоков у здания «MAIN TOWER» и в прилегающей городской застройке при юго-западном ветре
    (1 — здание «Eurotheum», 110 м; 2 — здание «MAIN TOWER», 200 м; 3 — здание «Garden Towers», 127 м)

    Для исследований в аэродинамической трубе использовались модели в масштабе от 1:300 до 1:100. Масштаб определялся размерами исследуемой городской зоны (среды застройки) и возможностями аэродинамической трубы. В ходе испытаний модели располагались на поворотном столе, что позволило изучить характер распределения воздушных потоков при изменении направления ветра (рис. 13).

    Для качественной оценки распределения воздушных потоков вблизи поверхности зданий и на уровне улиц, прилегающих к зданию, применялась визуализация воздушных потоков посредством дыма. На основе полученных в ходе экспериментов в аэродинамической трубе результатов были построены схемы воздушных потоков у здания «MAIN TOWER» и в прилегающей городской застройке при различных направлениях ветра. Схема воздушных потоков при юго-западном ветре представлена на рисунке 14. Можно отметить, что при этих условиях между зданиями наблюдается ускорение воздушного потока, что приводит к понижению давления в этой зоне.



    Рисунок 15.

    Распределение аэродинамических коэффициентов на отметке 93 м с учетом влияния соседних зданий при юго-западном ветре

    Для количественной оценки аэродинамических коэффициентов на модели здания были размещены датчики давления. На рис. 15 показано распределение аэродинамических коэффициентов на отметке 93 м с учетом влияния соседних зданий при юго-западном ветре. Сравнение рис. 8 и 15 показывает, что из-за влияния соседних зданий характер распределения аэродинамических коэффициентов отличается от случая, когда рассматривалась модель только здания «MAIN TOWER».



    Рисунок 16. (подробнее)

    Относительные скорости воздушных потоков, зафиксированных датчиками, размещенными у модели здания (датчики 1—6 расположены на высоте 1,8 м)

    Для изучения воздушных потоков в зонах, прилегающих к зданию, датчики были размещены на модели на уровне улицы (отметка 1,8 м) и у покрытий окружающих зданий. На рис. 16 представлены скорости воздушных потоков, зафиксированных датчиками, по отношению к средней скорости господствующего ветра 3,3 м/с. Скорости воздушных потоков фиксировались при различных направлениях ветра. Исследования показали, что на уровне улицы скорости воздушных потоков уменьшаются: их численные значения составляют приблизительно 2,0–2,6 м/с. Между соседними зданиями скорости воздушных потоков возрастают, однако при низких скоростях набегающего потока (слабых ветрах) возрастание скорости воздушных потоков между соседними зданиями относительно невелико. Если средняя скорость господствующего ветра составляет 3,3 м/с, скорость воздушного потока между зданиями возрастает примерно до 4,0–4,6 м/с.

    Опыт архитектурно-климатических достижений.

    Как указано выше, климат — многолетний режим погоды, наблюдаемый в данной местности. Проблема оценки климата может рассматриваться на трех уровнях или в трех аспектах. Под макро-климатической (фоновой) оценкой следует понимать оценку метеорологических условий на значительной по площади территории, выделенной общностью климатических характеристик (регион, район, подрайон). Можно говорить о климате центрального района европейской части России, климате Урала, Кольского полуострова, подрайона 1 В (по карте СНиП) и др. Оценка мезоклимата (или со-масштабного ему местного климата) предполагает выявление климатических особенностей, свойственных городу или крупному населенному пункту как единому целому: климат Москвы, Владивостока, Салехарда и др.

    Архитектурно-климатический анализ проводится с целью установления связей между архитектурой, под которой понимается искусство строить здания, сооружения и их комплексы, и климатическими условиями, в которых объекты архитектуры строятся или будут строиться. Архитектурно-климатический анализ начинают с анализа отдельных климатических характеристик: количества солнечной радиации, скорости ветра, температуры и влажности и т.д., — каждая из которых по-своему влияет на выбор архитектурно-градостроительных и связанных с ними инженерно-строительных решений. Пример областей учета климатических параметров в процессе архитектурного проектирования приведен в табл. 2.1.

    Архитектурная климатография основана а комплексном анализе климатических факторов, оказывающих воздействие на архитектурную среду и находящегося в ней человека. Некоторые из этих факторов при одновременном воздействии взаимно усиливают это влияние. Например, при низких температурах воздуха ее анализируют совместно с ветровым воздействием, при высоких температурах — совместно с влажностью воздуха и солнечной радиацией и т.д. вплоть до комплексных показателей, учитывающих четыре и более факторов.

    Связь архитектурной композиции с климатическими условиями («+» — связь существует)

    В архитектуре здание рассматривается не просто как физическая оболочка, защищающая внутреннюю среду и человека от неблагоприятных климатических воздействий, а как совокупность архитектурных форм и приемов, позволяющих лучше приспособить его к природно-климатическим условиям и делающих эту защиту более эффективной и менее энергоемкой. Именно этим архитектурная климатография, изучающая аспекты связи архитектуры и различных факторов климата, отличается от других видов прикладной климатологии, в том числе строительной климатологии.

    Способность зданий защищать их внутреннюю среду и прилегающую территорию от неблагоприятных климатических воздействий напрямую зависит от того, как в архитектурно-планировочном решении этих зданий на этапе их проектирования были учтены факторы окружающей среды, насколько было продумано применение тех или иных строительных материалов и конструкций, пластических и колористических решений.

    Поскольку в большинстве районов земного шара летом и зимой погодные условия различаются, практически невозможно найти архитектурно-строительное решение, одинаково эффективно приспособленное для зимних и летних погодных условий. В связи с этим возникает еще одна практическая задача — создание адаптивной архитектурной формы и среды, по-разному, но одинаково эффективно «работающих» при различных типах погоды. Способность зданий адаптироваться к изменяющимся погодным условиям определяется наличием неизменяемых, «пассивных» климатозащитных архитектурных приемов, которые в большинстве случаев дополняются трансформируемыми, «активными» климатозащитными архитектурными деталями и элементами. К первым можно отнести, например, тектонику зданий и конструкцию их стен или ориентацию зданий по сторонам горизонта. Ко второй категории относятся архитектурные решения, касающиеся, например, создания буферных зон между внешними ограждениями и внутренними помещениями, микроклимат в которых контролируется трансформируемыми ограждающими конструкциями, трансформируемыми светопроемами, солнцезащитными устройствами и т.д.

    Таким образом, в самом общем виде можно выделить три основных направления климатозащитных решений в архитектуре:

    • а) пассивные здания с неизменными климатозащитными функциями за счет применения пассивных архитектурных решений;

    • б) здания с активными климаторегулирующими архитектурными решениями, которые могут изменять степень и даже направление климатозащиты в зависимости от погодных условий;

    • в) здания, комбинирующие два перечисленных выше принципа. При этом пассивные приемы могут заменяться полностью или просто дополняться активными приемами регулирования климата, придавая зданию наиболее высокую «климатическую мобильность».

    В пассивных зданиях (тип «а») адаптивность к внешним климатическим воздействиям может достигаться за счет различного режима использования внутренних помещений при разных типах погоды или в разное время года. Или наоборот, в них должна предусматриваться внутренняя планировка, позволяющая максимально сохранять функции помещений, независимо от сезона или погодных условий. Часто в ущерб такой планировке приносится ее функциональность. В подобных зданиях также очень важно на проектной стадии правильно определить наиболее подходящие строительные материалы и конструктивные решения.

    В зданиях с активной климатозащитной архитектурой (тип «б») помещения могут адаптироваться ко внешним климатическим воздействиям — инсоляции, ветру, температуре — за счет трансформируемых архитектурных элементов: интерактивных фасадных конструкций, буферных зон, солнцезащитных или солнцеулавливающих устройств и т.д.

    Применение современных строительных технологий и материалов позволяет архитекторам проектировать здания, обладающие намного большей гибкостью и эффективностью в плане климатозащиты. Такие здания могут более точно реагировать на изменения погоды или применяться в различных типах климата. Однако эта универсальность не должна лишать их индивидуальности, связанной с природно-климатическими условиями местности, для которой они проектируются, лишать их «духа места», обезличивать, делать чужеродными по отношению к природному окружению. Поэтому современные технологии не следует противопоставлять местным архитектурным традициям. Только сочетание накопленного в традиционной архитектуре опыта защиты от неблагоприятного климата и новых технологических возможностей позволяет архитекторам находить свое, новое, выразительное и в то же время характерное для той или иной культуры архитектурное решение, обеспечивающее максимальную функциональную эффективность, долговечность и экономичность на всех этапах жизненного цикла здания.

    Сложность адаптации архитектурного решения к климатическим условиям заключается в том, что универсального архитектурно-климатического показателя, определяющего необходимость применения того или иного архитектурного способа климатозащиты, который мог бы с одинаковой степенью точности и надежности применяться в любых климатических районах, не существует. Поэтому последовательность архитектурно-климатического анализа предусматривает выявление тех климатических параметров и их сочетаний, которые создают основные проблемы для конкретной территории, после чего приступают к разработке архитектурно-климатических мероприятий по снижению их негативного воздействия на внутреннюю среду здания и прилегающую к нему территорию. В условиях континентального климата с контрастными погодными условиями зимой и летом эти решения могут носить взаимоисключающий характер, поэтому задача архитектора часто сводится к поиску разумного компромисса между наиболее неблагоприятными и наименее благоприятными климатическими воздействиями. Это является важной частью творческого процесса по поиску гармоничного решения связи архитектуры с природно-климатическими условиями конкретной местности.

    Климатозащитные функции зданий и типы погод. Наиболее наглядным способом учета комплексности воздействия совокупности метеоэлементов и климатических характеристик на архитектурную среду является метод погодных комплексов. Для различных типов погоды (табл. 2.2) в архитектуре применяются соответствующие архитектурно-типологические характеристики. При этом отметим, что для зданий, в частности жилых, введено понятие эксплуатационный режим. Различаются четыре эксплуатационных режима (табл. 2.3): изолированныйзакрытыйрегулируемый, или полуоткрытый, и открытый. Иллюстрацией к табл. 2.3 является рис. 2.1.



    Рис. 2.1. Режимы эксплуатации жилых зданий при различных типах погоды:

    а — жаркой (изолированный режим); б — сухой жаркой или засушливой (закрытый режим); в — теплой (полуоткрытый режим); г — комфортной (открытый режим); д — прохладной (полуоткрытый режим); е — холодной (закрытый режим); ж —суровой (изолированный режим)

    Метод учета продолжительности погодных комплексов непосредственно раскрывает связи климата с задачами градостроительства и типологии зданий. Этот метод помогает архитекторам наметить пути к раскрытию связи погодных комплексов с категориями архитектурной композиции, например с архитектурным пространством, массой (пластика объемного решения), пластикой поверхности. Так, для погоды комфортной и теплой типичны открытый характер архитектурных пространств (свободная застройка микрорайонов, площадей; планировка внутренних помещений, обеспечивающая аэрацию и раскрытие во внешнюю среду), расчлененная масса здания (дворики, курдонеры, разделение зданий на блоки); расчлененная (нередко активно расчлененная) пластика поверхностей (лоджии, балконы, окна значительных размеров, затеняющие козырьки, навесы, перфорированные ограждения). Для холодной погоды с ветром рекомендуются пространства замкнутые, полузамкнутые и ориентированные; масса нерасчлененная, мало расчлененная, обтекаемая и ориентированная; пластика поверхности нерасчлененная. Наконец, метод погодных комплексов позволил отечественной архитектурной климатологии впервые выйти на уровень охвата мировой архитектурной практики, оперативно сравнивать многие города по их архитектурно-климатическим требованиям к открытой среде и зданиям. Эти возможности намного расширяют эффективность архитектурно-климатического анализа.

    В то же время следует отметить, что этот метод ориентирован не на повышение комфортности микроклимата, а на климатозащиту. По сложившейся практике в качестве минимальной продолжительности типа погоды, определяющего режим эксплуатации жилища, принимается 1 месяц. Вместе с тем при проектировании необходимо учитывать и такие погодные условия (сочетания метеоэлементов), которые могут угрожать жизни и здоровью населения, хотя их повторяемость может и не превышать 1—2%. В этом состоит принципиальное и весьма перспективное направление дальнейшего развития архитектурной климатографии.

    Жилая среда при комфортной погоде почти не несет климатозащитных функций. Тепловые условия комфортной погоды не ограничивают время пребывания человека во внешней среде, хотя в пределах указанных в табл. 2.2 крайних параметров могут быть желательны инсоляция или затенение. Комфортная погода характеризуется температурами 18—25°С, относительной влажностью воздуха 30—60%, скоростью движения воздуха 0,1—0,2 м/с в помещении, 1—3 м/с снаружи. Это лучший период московского лета. Режим эксплуатации помещений открытый, при котором помещения, как правило, непосредственно связаны с внешней средой (открытые окна). Не обязательны ограждающие конструкции зданий с высокими теплоизоляционными качествами, отопительное и охлаждающее оборудование; характерны лоджии, веранды, активный естественный воздухообмен помещений с наружной средой.

    Жилая среда при прохладной погоде защищает человека от легкого охлаждения. В городской среде защита от ветра и использование инсоляции создают условия, близкие к комфортным. Прохладная погода характеризуется наружными температурами от 6 до 10°С (апрель-май, октябрь в Москве). В качестве нижней границы прохладной погоды принята температура 4°С, поскольку при наружных температурах 4,5—5°С и выше воздухообмен через форточки вполне допустим, режим полуоткрытый или регулируемый, а не закрытый (как при холодной погоде). Верхняя граница прохладной погоды обусловлена тем, что при наружной температуре 12°С и ниже желательны обогрев неинсолируемых помещений и экономия внутренних тепловых выделений здания. Относительная влажность наружного воздуха в указанном диапазоне температур большой роли не играет, так как влагосодержание наружного воздуха значительно ниже физиологического предела ощущения духоты. Для зданий характерны: обращение комнат на солнечные стороны горизонта; умеренно компактные объемно-планировочные решения; в квартирах — наличие места для хранения верхней одежды; воздухообмен через форточки, фрамуги, клапаны; трансформация (открывание и закрывание окон) и необходимая воздухонепроницаемость и теплозащитные качества ограждений; отопительные устройства малой мощности; накопление внутренних тепловыделений.

    Жилая среда при холодной погоде защищает человека от сильного охлаждения. В городской среде желательна эффективная защита от ветра (ветрозащитная застройка) и использование солнца, что смягчает условия охлаждения, но не создает комфорта. Холодная погода с позиции обеспечения комфортности внутренней среды зданий, а также необходимости защиты человека в городской среде от ветра и использования солнечной радиации, характеризуется температурами до -25°С; скорость ветра составляет 3—10 м/с, но при низких температурах не должна превышать: 5 м/с при температурах до -28°С и 2 м/с при -36°С. Эти значения характерны для зимы на европейской территории России, в Западной и на юге Восточной Сибири. Нижняя граница холодной погоды принята из условий воздухообмена за счет притока наружного воздуха.

    Жилая среда при суровой погоде должна полностью изолировать человека от внешнего воздействия. При наружной температуре -35°С и ниже относительная влажность внутреннего воздуха не превышает 5%, а с учетом внутренних влаговыделений — 25%, т.е. меньше гигиенического предела 30%. Ниже температуры, принятой в качестве границы, требуются искусственная вентиляция с увлажнением воздуха и защита человека вне здания от обморожения и чрезмерных теплопотерь. Для зданий характерны: режим эксплуатации — закрытый; компактные объемно-планировочные решения, обеспечивающие минимальные теплопотери; закрытая отапливаемая лестница; шкафы для верхней одежды; необходимая (для воздухообмена) воздухопроницаемость и высокие теплозащитные качества ограждений; окна закрыты, уплотнены; центральное отопление средней мощности, вытяжная канальная вентиляция (для зданий более 10 этажей требуются иные подходы к оценке воздухообмена помещений).

    Жилая среда при теплой погоде должна предусматривать возможность перегрева помещений. Однако хорошее затенение и аэрация создают комфортные условия или близкие к ним в городской среде. Характерна температура воздуха от 20 до 32°С в зависимости от относительной влажности воздуха (наиболее жаркие дни в средней полосе России). Верхняя граница теплой погоды обусловлена разным влиянием влажности и степенью возможности использования движения воздуха для компенсации повышения температуры. При температуре воздуха 32—33°С и выше бороться с перегревом путем проветривания очень трудно. Поэтому предел 32°С принят как верхняя граница теплой погоды при низкой и нормальной влажности воздуха. При повышенной влажности большую роль играет предел влагосодержания, который и предопределяет верхнюю границу погоды по температуре воздуха 28°С при влажности до 75% и 25°С при более высокой влажности. Это относится к случаям, когда радиационная температура и температура воздуха одинаковы, а скорость ветра находится в пределах 0,5—1,0 м/с.

    При теплой погоде для зданий рекомендуется: двусторонняя планировка квартир (офисов, других помещений) для обеспечения активного сквозного или углового проветривания внутренних пространств; открытые помещения — лоджии, веранды, террасы, придомовые дворики; трансформация пространств и ограждающих конструкций в суточном ходе, открытые окна, обязательное наличие солнцезащитных устройств на окнах, в помещениях — механические вентиляторы-фены. Однако наиболее дорогостоящие приемы, к которым относятся планировка со сквозным или угловым проветриванием, — солнцезащитные устройства на окнах (наиболее эффективные — наружные) и др. используются далеко не всегда.

    Жилая среда при жаркой сухой (.засушливой) погоде защищает человека от сильного перегрева, избыточной инсоляции, а нередко и от пылеветрового воздействия. Режим эксплуатации зданий — закрытый. Характерны компактные объемно-планировочные решения, обеспечивающие минимальные теплопоступления извне, увеличение кубатуры внутренних пространств, открытые помещения для вечернего и ночного отдыха, защищенные от солнца светопроемы, искусственное (испарительное) охлаждение, принудительная местная вентиляция, использование охлаждающего действия грунтовых полов и оснований зданий. В городской среде активное притенение и обводнение смягчают микроклимат, но не всегда способны создать полностью комфортные условия. Необходимы защита от перегретых пыльных ветров пустынь, улавливание ночных прохладных потоков воздуха с гор и возвышенностей, устройство фонтанов. Типичны температуры 33—36°С и влажность менее 24% (дневные часы лета в Средней Азии).

    Жилая среда при жаркой погоде также защищает человека от сильного перегрева, избыточной инсоляции и духоты. Ощущение духоты вызывается сочетанием высокой температуры и высокой влажности воздуха. Режим эксплуатации зданий — изолированный, требующий для создания условий теплового комфорта полного кондиционирования воздуха в режиме удаления избыточной влаги. Недопустимы испарительное (повышает влагосодержание) и радиационное (образуется конденсат) охлаждение. Характерны компактные объемно-планировочные решения, открытые помещения для вечернего и ночного отдыха, использование охлаждающего действия грунтовых полов и оснований зданий. Окна при работе кондиционеров должны плотно закрываться, иметь солнцезащитные устройства. Для городской среды и традиционного жилища характерны притенение и активная аэрация, поскольку только движение воздуха способно облегчить ощущение духоты и перегрева, но не в состоянии обеспечить полный физиологический комфорт. Типичные температуры воздуха составляют 30—35°С при влажности 60—25% (наиболее жаркие дни на Черноморском побережье Кавказа, характерные условия для тропического морского и экваториального типов климата).

    Как можно заметить, в предложенной классификации жаркая погода с высокой и нормальной влажностью представляет собой один тип, хотя во многом они различаются и имеют разное географическое распределение. Объединение основано на общности типологических требований для получения комфортных условий архитектурной среды (охлаждение с понижением влажности, аэрация, солнпезащита и т.д.).

    Архитектурно-климатический анализ в части оценки фоновых условий по типам погоды требует подсчета количества дней (месяцев или полусуток) с той или иной погодой. По сложившейся в 1960— 1980-х гг. практике проектирования и строительства в СССР, когда преобладала тенденция типизации проектов и стремление к экономичности решений, климатические районы, определявшие право на введение новых проектов, охватывали территории, в пределах которых повторяемость погоды менялась на 15—20% от одного района к другому. В то время был сделан вывод, что минимальной повторяемостью погоды, которую на том этапе следовало учитывать в типовом проектировании, является 8% от длительности года. Величина 8% свидетельствует о том, что здания и градостроительные образования проектировались и в значительной мере проектируются сейчас со значительным допуском условий, далеких от комфорта.

    Если бы при проектировании зданий учитывались вероятные условия эксплуатации по примеру гидротехнических сооружений (например, по 1%-ному паводку), то затраты на их строительство значительно возросли бы. Между тем, чтобы обеспечить полную безопасность, может когда-нибудь дело дойдет и до учета погодных событий, имеющих повторяемость на уровне 1—2%. В настоящее время целесообразным представляется учитывать метеорологические условия, имеющие обеспеченность не менее 5%, а в отдельных случаях, при проектировании городских территорий, — и более редкие явления, особенно связанные с опасностью для жизни населения (скажем, сильные порывистые ветры).

    Для обеспечения полного комфорта летом в упомянутых городах надо выполнить требования, предъявляемые к жилой среде теплой погодой. Например, как показал опыт последних 15—20 лет, в Центральном регионе России, в том числе в Москве, летом могут наблюдаться «волны жары», имеющие настолько большую интенсивность и продолжительность, что отсутствие приспособленности жилой среды к ним наносит большой вред городу и его жителям. Памятна «волна жары» 2010 г., длившаяся почти месяц, — явление, повторяемость которого составляет 2% (примерно раз в 50 лет). Поскольку жилая среда не была приспособлена к такой погоде, это явление имело очень тяжелые последствия для москвичей и жителей других городов региона. Достаточно сказать, что в течение месяца, пока длилась эта жара, уровень смертности в Москве повысился более чем в два раза.

    Еще одним важным аспектом создания комфортной и безопасной с точки зрения климатического воздействия архитектурной среды является комплексная оценка климатических условий территории застройки с позиции выработки климатозащитных мероприятий соответствующими архитектурно-планировочными средствами. Для такой оценки можно использовать специально разработанные номограммы, учитывающие одновременное воздействие целого ряда климатических фактов и показывающие требуемое направление воздействия на климатические параметры застройки. Основные доступные для этого архитектурно-планировочные и инженерно-технические средства регулирования микроклимата представлены в приложении 2.

    Для такого вида архитектурно-климатического анализа способом оценки комфортности климатических условий является по-факторная оценка, но ориентированная не на архитектурную среду, а на человека, субъектом которого он является. При таком анализе необходимы данные о возрасте, здоровье и виде деятельности людей в конкретной ситуации, как это делается при гигиенической оценке микроклимата. В первом приближении в качестве субъекта можно принять взрослого здорового человека-пешехода, поскольку при неблагоприятных условиях все остальные группы населения могут находиться под защитой внутренней среды зданий, а отдельные, не отвечающие погодным условиям виды деятельности на территории застройки могут быть сознательно ограничены.

    В общем случае при пофакторном анализе климата в архитектурных целях необходимы знания положений архитектурной климатологии, знание функционального назначения и технико-экономических показателей объекта, ради которого проводится анализ, и критериев, определяющих то или иное решение. Так, например, необходимость солнцезащиты участков и зданий, связанных с длительным пребыванием населения, обусловливается продолжительностью периода с температурой воздуха 2 ГС и выше. Известно также, что в Москве благоприятные условия на балконах и лоджиях складываются: если имеется инсоляция — при температурах 12— 16°С; если используется солнцезащита — при 16—26°С. Как видно из этого примера, анализ условий комфортности требует учета совокупности критериев оценки и средств регулирования среды, реализованных, как правило, в виде отдельных методических разработок. В обобщенном виде климатозащитные мероприятия при выборе архитектурно-планировочного решения могут определяться по номограммам, представленным на рис. 2.2.
    Архитектурные проекты Нормана Фостера в столице Казахстана Астане
    Норман Фостер – современный английский архитектор, один из лидеров стиля хай-тек, суперзвезда мировой архитектуры. В 1967 г. основал в Лондоне собственное агентство «Фостер и партнеры», которое сейчас имеет офисы в 20 странах. В 2010 г. отметил 75-летний юбилей. Первым сооружением по эскизам Фостера в СНГ стал Байтерек (монумент) в столице Казахстана Астане, построенный в 2002 г. Затем коллекция архитектурных шедевров Астаны пополнилась еще тремя проектами лорда Фостера. Наша рубрика в этом номере журнала будет полностью посвящена этим оригинальным сооружениям.

     

              Байтерек. Астана стала полигоном идей для знаменитого британского архитектора Нормана Фостера, который создал эскиз Байтерека. Монумент представляет собой высокую металлическую конструкцию весом свыше 1000 т на 500 сваях с огромным шаром на вершине. Высота сооружения составляет 97 м и знаменует собой перенос столицы из Алматы в Астану в 1997 г. Диаметр позолоченного шара - 22 м, а вес - 300 т, шар выполнен из стекла «хамелеон», меняющего цвет в зависимости от солнца. Нижний уровень «тополя» (байтерек по-казахски) уходит на четыре с половиной метра под землю, где расположены кафе, аквариумы и минигалерея. Оттуда же можно подняться на лифте на самый верхний уровень - шар, внутри которого располагаются бар и панорамный зал. Крупные парковые площади вокруг монумента в сердце города регулярно используются для проведения необычных мероприятий. «Байтерек» означает молодое, крепкое, растущее дерево, символизирует собой государство, сохранившее свои исторические корни, имеющее прочную опору и устремленность к будущему процветанию.
      

      Дворец мира и согласия - пирамида, созданная архитектором сэром Норманом Фостером в Астане специально для проведения «Конгресса лидеров мировых и традиционных религий», строительство которой завершилось в 2006 г. Сталь, алюминий, множество специальных стеклянных конструкций, уникальные технические идеи, архитектурное новаторство – сооружение на самом деле походит на чудо. Площадь пирамиды 28 тыс. м2, высота 62 м, основание 62х62 м2. Внутри расположены оснащенные современным оборудованием конференц-залы и выставочные павильоны, художественные галереи, презентационные комплексы, там разместились Музей культуры, Университет цивилизаций, Оперный театр на 1500 мест. К вершине пирамиды ведут волнистые лестницы сквозь «Зимний сад», восхищающий разнообразием мировой растительности, его уже сейчас называют «висячие сады Астаны». Ночью вершина сооружения светится изнутри. Пирамида стала символом единения различных религий, этносов и культур, открытости народа и государства всему миру.

     

      «Хан-Шатыр» (Хан-шатер) - крупный торгово-развлекательный центр в Астане - был открыт в 2010 г. Здание по проекту Фостера представляет собой гигантский прозрачный шатер высотой 150 м (шпиль), сконструированный из сети стальных вант, на которых закреплено прозрачное полимерное покрытие ETFE, которое создает комфортный микроклимат внутри комплекса. Общая площадь Хан-Шатыра - 127 тыс. м2. В помещении размещены рознично-торговые и развлекательные комплексы (супермаркет, семейный парк, кафе и рестораны, кинотеатры, спортивные залы, аквапарк с искусственным пляжем и бассейны с эффектом волн, служебные и офисные помещения, паркинг на 700 мест и др.). Это шатер Нормана Фостера вошел в десятку лучших мировых экозданий по версии журнала Forbes Style, став единственным зданием в СНГ, которое журнал включил в свой хит-парад.

     
     

    Новый проект Нормана Фостера в Астане на сайте архитекторского бюро называется «Центральный базар», или Abu Dhabi Plaza, - это поражающая воображение матрица зданий, в которых разместятся развлекательный центр, торговые площадки как воплощение традиционного восточного базара, гостиница, а также множество офисов. К Abu Dhabi Plaza будет подведена ветка легкого метро, а внутри будут разбиты вечнозеленые сады и пешеходные маршруты. Располагаться будет это грандиозное сооружение в 88 этажей рядом с «Байтереком», на куске земли, который президент Казахстана подарил президенту ОАЭ, шейху Халифе бен Заиду. Строительство будет вести компания Aldar, строящая объект с таким же названием в самой столице Эмиратов.

     
    1   2


    написать администратору сайта