Главная страница
Навигация по странице:

  • ЭНЕРГЕТИЧЕСКИЙ УРОВЕНЬ РЕАКЦИИ

  • СРЕДНИЙ ЭНЕРГЕТИЧЕСКИЙ УРОВЕНЬ МОЛЕКУЛ

  • СРЕДНИЙ ЭНЕРГЕТИЧЕСКИЙ УРОВЕНЬ МОЛЕКУЛ.

  • ЭНЕРГЕТИЧЕСКИЙ ИТОГ РЕАКЦИИ

  • ОБЩИЕ СВОЙСТВА КАТАЛИЗАТОРОВ

  • I класс - ОКСИДОРЕДУКТАЗЫ.

  • II класс - ТРАНСФЕРАЗЫ Катализируют реакции переноса химических групп с молекулы одного вещества на молекулу другого вещества.III класс - ГИДРОЛАЗЫ

  • IV класс - ЛИАЗЫ Катализируют реакции разрушения химических связей без участия воды.V класс - ИЗОМЕРАЗЫ

  • VI класс - ЛИГАЗЫ (СИНТАЗЫ, СИНТЕТАЗЫ) Катализируют реакции синтеза. ОСНОВНЫЕ ЭТАПЫ ФЕРМЕНТАТИВНОГО КАТАЛИЗА

  • КИНЕТИКА ФЕРМЕНТАТИВНОГО КАТАЛИЗА

  • ХАРАКТЕРИСТИКА КОНКУРЕНТНЫХ ИНГИБИТОРОВ

  • ХАРАКТЕРИСТИКА НЕКОНКУРЕНТНЫХ (АЛЛОСТЕРИЧЕСКИХ) ИНГИБИТОРОВ

  • Строение и свойства ферментов


    Скачать 0.5 Mb.
    НазваниеСтроение и свойства ферментов
    Дата13.02.2019
    Размер0.5 Mb.
    Формат файлаdoc
    Имя файла6_Stroenie_i_svoystva_fermentov.doc
    ТипДокументы
    #67387



    Ферменты

    СТРОЕНИЕ И СВОЙСТВА ФЕРМЕНТОВ
    ФЕРМЕНТЫ (энзимы) - это высокоспецифичные белки, выполняющие функции биологических катализаторов. Катализатор - это вещество, которое ускоряет химическую реакцию, но само в ходе этой реакции не расходуется.

    Какие условия необходимы для химического взаимодействия молекул, чтобы произошла химическая реакция?

    1) Молекулы должны сблизиться (столкнуться). Но не всякое столкновение приводит к взаимодействию.

    2) Необходимо, чтобы это столкновение стало эффективным - завершилось бы химическим превращением. Обязательное условие для эффективности столкновения - чтобы запас энергии молекул в момент столкновения был не ниже энергетического уровня реакции.

    ЭНЕРГЕТИЧЕСКИЙ УРОВЕНЬ РЕАКЦИИ - это запас энергии, которым должны обладать молекулы, чтобы их столкновение стало эффективным (чтобы произошла химическая реакция). Этот запас энергии является постоянной характеристикой (константой) для каждой данной реакции.

    СРЕДНИЙ ЭНЕРГЕТИЧЕСКИЙ УРОВЕНЬ МОЛЕКУЛ – это энергия, которой обладает большинство молекул системы в данный момент времени. Эта средняя величина энергетического запаса, которая характеризует совокупность данных молекул в данных конкретных условиях (температура, давление и другие). Энергетический запас молекул - это понятие статистическое (вероятностное). Молекулы постоянно находятся в тепловом движении. Поэтому энергетический запас каждой из них все время изменяется, колеблется около величины, которая и представляет собой СРЕДНИЙ ЭНЕРГЕТИЧЕСКИЙ УРОВЕНЬ МОЛЕКУЛ.



    В каждый момент времени наибольшая доля молекул данной совокупности обладает именно таким СРЕДНИМ запасом энергии. И чем больше отличается энергия определенной группы молекул от среднего энергетического уровня (в любую сторону), тем малочисленнее эта группа. В любой совокупности молекул ее определенная доля обладает такой энергией, которая выше среднего энергетического уровня и достаточна для протекания химической реакции.

    РАЗНОСТЬ между СРЕДНИМ ЭНЕРГЕТИЧЕСКИМ УРОВНЕМ МОЛЕКУЛ и ЭНЕРГЕТИЧЕСКИМ УРОВНЕМ РЕАКЦИИ называется энергетическим барьером или ЭНЕРГИЕЙ АКТИВАЦИИакт.). Чем больше эта энергия активации, тем медленнее идет химическая реакция.

    КАК УСКОРИТЬ ХИМИЧЕСКУЮ РЕАКЦИЮ? Повышение среднего энергетического уровня молекул (повышение температуры, давления и других параметров среды, которое используют на химических заводах и фабриках) НЕВОЗМОЖНО для живых организмов, которые нормально функционируют только при постоянных значениях температуры, давления и других параметров. Невозможен и другой путь - уменьшение энергии активации путем снижения энергетического уровня реакции, поскольку эта величина является постоянной характеристикой данной реакции.

    Поэтому, только явление катализа (применение катализаторов) может обеспечить ускорение химических реакций в живых организмах. Рассмотрим две реакции (смотрите рисунок).




    В общем случае энергии активации реакций 1, 2а и 2б не совпадают между собой, и все разнообразие возможных вариантов можно разделить на две группы:

    1) Еакт и/или Еакт БОЛЬШЕ, чем Еакт1.

    Во всех таких случаях реакция образования вещества "АВ" с участием вещества "К" пойдет медленнее. Значит, вещество "К" является ИНГИБИТОРОМ (замедлителем) этой реакции.

    2) Еакт и/или Еакт МЕНЬШЕ, чем Еакт1.

    В этих случаях реакция с участием вещества "К" пойдет быстрее, чем без него. Значит, вещество "К" является КАТАЛИЗАТОРОМ (ускорителем) данной химической реакции.

    КАТАЛИЗАТОР - это вещество, которое направляет реакцию по такому обходному пути, на котором энергетические барьеры ниже.

    Рассмотренные реакции можно представить в виде "вертикального среза" через вершину вулкана, кратер которого имеет неодинаковые по высоте края.



    На этом рисунке видно, что энергия, которую надо затратить для "подъема" молекулы от среднего энергетического уровня реакции, полностью компенсируется при самостоятельном "скатывании" молекулы по склону "вулкана". При дальнейшем самопроизвольном "скатывании" до подошвы "вулкана" (то есть, до среднего энергетического уровня молекул, которые являются продуктами данной реакции). Энергия, которая при этом выделяется, называется "ЭНЕРГЕТИЧЕСКИЙ ИТОГ РЕАКЦИИ".
    ЭНЕРГЕТИЧЕСКИЙ ИТОГ РЕАКЦИИ - это разность между энергетическим уровнем исходных веществ (субстратов) и энергетическим уровнем продуктов реакции.

    Энергетический итог реакции не зависит от пути, по которому идет реакция (он одинаков и для реакции с участием катализатора, и для реакции без его участия). Он не зависит и от величины энергии активации - от нее зависит только скорость протекания каждого из путей этой реакции.

    Это видно из УРАВНЕНИЯ АРРЕНИУСА:


    Вывод из уравнения Аррениуса: так как энергия активации в этом уравнении входит в показатель степени, то даже маленькое изменение энергии активации приводит к большим изменениям скорости реакции.
    ОБЩИЕ СВОЙСТВА КАТАЛИЗАТОРОВ

    1. Катализаторы сами НЕ ВЫЗЫВАЮТ химическую реакцию, а только УСКОРЯЮТ реакцию, которая протекает и без них.

    2. Не влияют на энергетический итог реакции.

    3. В обратимых реакциях катализаторы ускоряют как прямую, так и обратную реакцию, причем в ОДИНАКОВОЙ степени, из чего следует, что катализаторы:

    а) НЕ ВЛИЯЮТ на НАПРАВЛЕННОСТЬ обратимой реакции, которая определяется только соотношением концентраций исходных веществ (субстратов) и конечных продуктов;

    б) НЕ ВЛИЯЮТ на ПОЛОЖЕНИЕ РАВНОВЕСИЯ обратимой реакции, а только ускоряют его достижение.

    ОСОБЕННОСТИ ФЕРМЕНТОВ КАК БИОЛОГИЧЕСКИХ КАТАЛИЗАТОРОВ


    Ферменты обладают всеми общими свойствами обычных катализаторов. Но, по сравнению с обычными катализаторами, все ферменты являются белками. Поэтому они обладают особенностями, отличающими их от обычных катализаторов. Эти особенности ферментов, как биологических катализаторов, иногда называют общими свойствами ферментов. К ним относятся:

    1. Высокая эффективность действия. Ферменты могут ускорять реакцию в 108 -1012 раз (примеры смотрите в пособии «Ферменты», стр.7-8).

    2. Высокая избирательность ферментов к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия) (смотрите примеры в пособии "Ферменты", стр. 14-15);

    3. Высокая чувствительность ферментов к неспецифическим физико-химическим факторам среды - температуре, рН, ионной силе раствора и т.д. (смотрите пособие "Ферменты" стр.10, 12-13);

    4. Высокая чувствительность к химическим реагентам;

    5. Высокая и избирательная чувствительность к физико-химическим воздействиям тех или иных химических веществ, которые благодаря этому могут взаимодействовать с ферментом, улучшая или затрудняя его работу (об активаторах и ингибиторах смотрите пособие "Ферменты", стр. 27-36).
    СТРОЕНИЕ ФЕРМЕНТОВ

    Субстратом (S) называют вещество, химические превращения которого в продукт (Р) катализирует фермент (Е). Тот участок поверхности молекулы фермента, который непосредственно взаимодействует с молекулой субстрата, называется АКТИВНЫМ ЦЕНТРОМ ФЕРМЕНТА.

    АКТИВНЫЙ ЦЕНТР ФЕРМЕНТА

    Активный центр фермента образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных полипептидных цепей, пространственно сближенных. Образуется на уровне третичной структуры белка-фермента.

    В его пределах различают АДСОРБЦИОННЫЙ УЧАСТОК (центр) и КАТАЛИТИЧЕСКИЙ УЧАСТОК (центр). Кроме того, вне активного центра фермента встречаются особые функциональные участки; каждый из них обозначают термином АЛЛОСТЕРИЧЕСКИЙ ЦЕНТР.

    КАТАЛИТИЧЕСКИЙ ЦЕНТР - это та область (зона) активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. Формируется он за счет радикалов двух, иногда трех аминокислот, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи. Например, каталитический центр "серин-гистидиновых" ферментов формируется за счет радикалов аминокислот серина и гистидина. Если фермент является сложным белком, то в формировании каталитического центра нередко участвует простетическая группа молекулы фермента (кофермент). Коферментную функцию выполняют все водорастворимые витамины и жирорастворимый витамин K. (подробнее о коферментной функции витаминов: пособие "Ферменты", стр.11).

    АДСОРБЦИОННЫЙ ЦЕНТР - это участок активного центра молекулы фермента, на котором происходит сорбция (связывание) молекулы субстрата. Он формируется одним, двумя, чаще тремя радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная его функция - связывание молекулы субстрата и передача этой молекулы каталитическому центру в наиболее удобном положении (для каталитического центра). Эта сорбция происходит ТОЛЬКО ЗА СЧЕТ СЛАБЫХ ТИПОВ СВЯЗЕЙ и потому ЯВЛЯЕТСЯ ОБРАТИМОЙ. По мере формирования этих связей происходит конформационная перестройка адсорбционного центра, которая приводит к более тесному сближению субстрата и активного центра фермента, более точному соответствию между их пространственными конфигурациями. Такое соответствие - не заранее "готовое", а формирующееся в ходе взаимодействия - американский ученый Кошленд положил в основу теории ИНДУЦИРОВАННОГО СООТВЕТСТВИЯ (или «НАВЕДЕННОГО» СООТВЕТСТВИЯ), которая преодолела ограниченность существовавшей ранее теории КЛЮЧА И ЗАМКА (жесткого соответствия структуры субстрата структуре адсорбционного центра).

    Очевидно, что именно структура адсорбционного центра определяет субстратную специфичность фермента, то есть требования фермента к молекуле химического вещества, чтобы она могла стать для него подходящим субстратом.

    Некоторые вещества, обладающие подходящими характеристиками (то есть похожие на субстрат), могут тоже связываться с адсорбционным центром фермента. Но если в их молекуле нет такой химической связи, на которую может воздействовать каталитический центр данного фермента, то химических превращений этого вещества не произойдет. Занимая активный центр фермента, такие молекулы блокируют его работу, то есть являются ОБРАТИМЫМИ ИНГИБИТОРАМИ данного фермента (обратимыми, потому что связаны с ферментом слабыми типами связей). Повышая концентрацию субстрата, их можно ВЫТЕСНИТЬ из адсорбционного центра. Поэтому такие ингибиторы называют КОНКУРЕНТНЫМИ. Они конкурируют с истинным субстратом данного фермента за обладание его адсорбционным центром.

    АЛЛОСТЕРИЧЕСКИМИ ЦЕНТРАМИ называют такие участки молекулы фермента вне его активного центра, которые способны связываться СЛАБЫМИ ТИПАМИ СВЯЗЕЙ (значит - обратимо) с тем или иным веществом (лигандом). Причем такое связывание приводит к такой конформационной перестройке молекулы фермента, которая распространяется и на активный центр, облегчая, либо затрудняя (замедляя) его работу. Соответственно такие вещества называются АЛЛОСТЕРИЧЕСКИМИ АКТИВАТОРАМИ или АЛЛОСТЕРИЧЕСКИМИ ИНГИБИТОРАМИ данного фермента.

    Термин "аллостерический" (то есть "имеющий иную пространственную структуру") появился в связи с тем, что эти эффекторы по своей пространственной конфигурации совсем не похожи на молекулу субстрата данного фермента (и потому не могут связываться с активным центром фермента). Было сделано заключение, что и аллостерический центр не похож по своей структуре на активный центр фермента.

    Аллостерические центры найдены не у всех ферментов. Они есть у тех ферментов, работа которых может изменяться под действием гормонов, медиаторов и других биологически активных веществ. Некоторые искусственно синтезированные лекарства обладают биологической активностью потому, что их молекулы комплементарны аллостерическому центру некоторых ферментов организма.
    СПЕЦИФИЧНОСТЬ ФЕРМЕНТОВ

    Различают два главных вида специфичности ферментов: СУБСТРАТНУЮ СПЕЦИФИЧНОСТЬ и СПЕЦИФИЧНОСТЬ ДЕЙСТВИЯ.
    СУБСТРАТНАЯ СПЕЦИФИЧНОСТЬ.

    Это способность фермента катализировать превращения только одного определенного субстрата или же группы сходных по строению субстратов. Определяется структурой адсорбционного участка активного центра фермента.

    Различают 3 типа субстратной специфичности:

    1) АБСОЛЮТНАЯ субстратная специфичность - это способность фермента катализировать превращение только одного, строго определенного субстрата.

    2) ОТНОСИТЕЛЬНАЯ субстратная специфичность - способность фермента катализировать превращения нескольких, сходных по строению, субстратов.

    3) СТЕРЕОСПЕЦИФИЧНОСТЬ - способность фермента катализировать превращения определенных стереоизомеров.

    Например, фермент оксидаза L-аминокислот способен окислять все аминокислоты, но относящиеся только к L-ряду. Таким образом, этот фермент обладает относительной субстратной специфичностью и стереоспецифичностью одновременно.
    СПЕЦИФИЧНОСТЬ ДЕЙСТВИЯ.

    Специфичность действия - это способность фермента катализировать только определенный тип химической реакции.

    В соответствии со специфичностью действия все ферменты делятся на 6 классов. Классы ферментов обозначаются латинскими цифрами. Название каждого класса ферментов соответствует этой цифре.
    КЛАССИФИКАЦИЯ ФЕРМЕНТОВ
    I класс - ОКСИДОРЕДУКТАЗЫ.

    К данному классу относятся ферменты, катализирующие окислительно-восстановительные реакции. При окислении может происходить либо отнятие водорода от окисляемого вещества, либо присоединение кислорода к окисляемому веществу. В зависимости от способа окисления различают следующие подклассы оксидоредуктаз:

    1) ДЕГИДРОГЕНАЗЫ. Катализируют реакции, при которых происходит отнятие водорода от окисляемого вещества. Пример:




    2) ОКСИГЕНАЗЫ. Ферменты этого подкласса катализируют включение кислорода в окисляемое вещество.

    a) Монооксигеназы - включают один атом кислорода в окисляемое вещество.

    Пример:


    б)Диоксигеназы - включают 2 атома кислорода в окисляемое вещество. Часто это сопровождается разрывом циклической структуры. По месту разрыва связи (на рисунке обозначено стрелкой) присоединяются атомы кислорода.

    Пример:


    II класс - ТРАНСФЕРАЗЫ

    Катализируют реакции переноса химических групп с молекулы одного вещества на молекулу другого вещества.

    III класс - ГИДРОЛАЗЫ

    Катализируют реакции разрушения химических связей с участием воды.

    IV класс - ЛИАЗЫ

    Катализируют реакции разрушения химических связей без участия воды.

    V класс - ИЗОМЕРАЗЫ

    Катализируют реакции изомерных превращений.

    VI класс - ЛИГАЗЫ (СИНТАЗЫ, СИНТЕТАЗЫ)

    Катализируют реакции синтеза.
    ОСНОВНЫЕ ЭТАПЫ ФЕРМЕНТАТИВНОГО КАТАЛИЗА

    Любая ферментативная реакция протекает через ряд промежуточных стадий. Различают три основных этапа ферментативного катализа:


    1 этап. ОРИЕНТИРОВАННАЯ СОРБЦИЯ СУБСТРАТА НА АКТИВНОМ ЦЕНТРЕ ФЕРМЕНТА С ОБРАЗОВАНИЕМ ОБРАТИМОГО E-S КОМПЛЕКСА (ФЕРМЕНТ-СУБСТРАТНОГО). На этом этапе происходит взаимодействие адсорбционного центра фермента с молекулой субстрата. При этом и субстрат подвергается конформационной перестройке. Все это происходит за счет возникновения слабых типов связей между субстратом и адсорбционным центром фермента. В результате этого молекула субстрата подается на каталитический центр в наиболее удобном для него положении. Этот этап является легко обратимым, потому что здесь участвуют только слабые типы связей. Кинетическая характеристика 1-го этапа ферментативного катализа - константа Михаэлиса (Км).

    2 этап. ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ МОЛЕКУЛЫ СУБСТРАТА В СОСТАВЕ ФЕРМЕНТ-СУБСТРАТНОГО КОМПЛЕКСА С ОБРАЗОВАНИЕМ КОМПЛЕКСА ФЕРМЕНТА С ХИМИЧЕСКИ ПРЕОБРАЗОВАННЫМ СУБСТРАТОМ. На этом этапе разрываются одни ковалентные связи и возникают новые. Поэтому этот этап протекает значительно медленнее, чем 1-й и 3-й этапы. Именно скорость второго этапа определяет скорость всей ферментативной реакции в целом. Значит, скорость ферментативного процесса в целом характеризуется величиной k+2, которая является почти всегда самой маленькой из всех частных констант скоростей. Кинетическая характеристика 2-го этапа - максимальная скорость (Vmax).

    3 этап. ДЕСОРБЦИЯ ГОТОВОГО ПРОДУКТА ИЗ ЕГО КОМПЛЕКСА С ФЕРМЕНТОМ. Этот этап протекает легче, чем 2-й. Он, как и 2-й этап, тоже необратим. Исключение - обратимые ферментативные реакции.
    КИНЕТИКА ФЕРМЕНТАТИВНОГО КАТАЛИЗА

    Учение о скоростях. Любая химическая реакция характеризуется, кроме принципиальной возможности ее протекания (обусловленной законами термодинамики), скоростью процесса. Скорость ферментативной реакции - изменение [S] или [P] в единицу времени. Измерив ее скорость, то есть скорость в присутствии фермента, мы должны измерить скорость реакции и в отсутствии фермента (спонтанно протекающая реакция). Именно эта разность и характеризует работу фермента.

    ИЗМЕРЯЯ СКОРОСТЬ РЕАКЦИИ, ВСЕГДА НАДО ИЗМЕРЯТЬ НАЧАЛЬНУЮ СКОРОСТЬ ПРОЦЕССА, то есть скорость ферментативной реакции, в достаточно короткий промежуток времени, когда концентрация субстрата меняется, не настолько значительно, чтобы это отразилось на скорости процесса. Единицы измерения скорости реакции могут быть разными. Лучше пользоваться молярными единицами, а время - это минуты или секунды, реже часы. Поэтому скорость реакции может выражаться, например, в мкмоль/мин или ммоль/час. Величина скорости определяется законом действующих масс. В общем случае скорость химической реакции пропорциональна произведению концентрации реагирующих веществ. В случае ферментативной кинетики - одно из реагирующих веществ - фермент, концентрация которого на много порядков МЕНЬШЕ, чем концентрация субстрата. Это определяет некоторые особенности кинетики ферментативного катализа.

    V = k+2. [E].[S]

    1. ЗАВИСИМОСТЬ СКОРОСТИ ФЕРМЕНТАТИВНОЙ РЕАКЦИИ ОТ КОНЦЕНТРАЦИИ ФЕРМЕНТА ([E]) при постоянной и довольно большой концентрации субстрата ([S]>>[E], [S]=const) имеет такой вид:



    Отклонение от линейности графика при очень высокой концентрации фермента возникает из-за нехватки субстрата, поэтому снижается скорость поступления субстрата на активный центр фермента. Определять скорость ферментативной реакции надо только в том диапазоне концентраций фермента, в котором график линеен.

    Линейность этого графика позволяет выразить его одной цифрой - тангенс угла наклона к оси абсцисс. Этот тангенс представляет собой величину активности фермента. Именно работа (эффективность) каждого фермента количественно характеризуется величиной его активности, то есть величиной скорости ферментативной реакции в расчете на единицу количества фермента. Единицы активности могут быть различными: мкмоль S/мин.мг или мкмоль S/мин.мл сыворотки крови.

    МОЛЕКУЛЯРНАЯ АКТИВНОСТЬ - это количество молекул субстрата, которые превращаются одной молекулой фермента за одну минуту при 30оС и прочих оптимальных условиях. Преимущество этой единицы - в том, что можно сравнивать не только активность ферментов из разных источников, но и эффективность разных ферментов. Например, молекулярная активность фермента каталазы составляет 5*106, а карбоангидразы - 36*106­­.

    Из линейности графика следует, что по скорости реакции можно судить о количестве фермента.

    КАТАЛ - это количество фермента, которое обеспечивает превращение 1 моля субстрата за 1 секунду.

    ЮНИТ - это количество фермента, которое превращает 1 мкмоль субстрата за 1 минуту. 1 Юнит = 16,67 нкатал
    ЗАВИСИМОСТЬ СКОРОСТИ ФЕРМЕНТАТИВНОЙ РЕАКЦИИ ОТ КОНЦЕНТРАЦИИ СУБСТРАТА ПРИ [E] = const и [S] >> [E].

    Чем выше концентрация субстрата, тем выше скорость реакции. Эта зависимость гиперболическая.



    Предельное значение, к которому стремится гипербола - Vmax данной реакции - характеризует максимальную работоспособность фермента:
    Vmax=k+2.[E]
    Таким образом,Vmax - это предел, к которому стремится скорость реакции при бесконечном повышении концентрации субстрата.

    Км - это КОНСТАНТА МИХАЭЛИСА. Она численно равна той концентрации субстрата, при которой скорость реакции составляет половину от максимального значения.

    Эта кривая описывается уравнением Михаэлиса-Ментен:



    ФИЗИЧЕСКИЙ СМЫСЛ Км заключается в том, что она представляет собой константу равновесия между двумя реакциями, приводящими к распаду фермент-субстратного комплекса и той реакцией, которая ведет к образованию этого комплекса.



    Поскольку значение k+2 всегда намного ниже, чем k-1, то



    Ks - субстратная константа. Характеризует константу равновесия 1-го этапа ферментативной реакции. Следовательно, Км обычно тоже довольно близка к Кs. Следовательно, Км, как и Кs, характеризует сродство субстрата к данному ферменту. Но экспериментально определить k-1 и k+2 очень трудно, поэтому трудно определить и Кs. А вот Км можно просто определить, используя координаты Лайнуивера-Бэрка ("Ферменты" стр. 26-27).

    С помощью Км можно характеризовать сродство данного фермента к данному субстрату. Чем меньше Км, тем больше сродство фермента к данному субстрату, а значит тем больше равновесие первого этапа ферментативной реакции сдвинуто вправо - в сторону образования фермент-субстратного комплекса. Значит, будут созданы наилучшие условия для протекания и второго этапа ферментативного процесса. При таких условиях для достижения эффективного превращения субстрата требуется малая концентрация субстрата. Значит, и Vmax теоретически может быть достигнута при малых количествах субстрата.

    Если Км высока, то это означает, что сродство фермента к такому субстрату низкое и реакция при небольших концентрациях субстрата протекает неэффективно.

    Км и Vmax - это две кинетические константы, с помощью которых можно характеризовать эффективность работы фермента, в том числе и in vivo.
    ИНГИБИТОРЫ ФЕРМЕНТОВ

    Ингибиторы ферментов - это вещества, замедляющие ферментативные реакции.



    ХАРАКТЕРИСТИКА КОНКУРЕНТНЫХ ИНГИБИТОРОВ

    Конкурируют с субстратом за обладание активным центром фермента. По структуре они похожи на субстрат. Присоединяются к адсорбционному центру фермента: действуют на стадии I-го этапа ферментативного катализа. Поэтому конкурентные ингибиторы увеличивают Km и уменьшают сродство фермента к субстрату. Они не изменяют Vmax ферментативной реакции: при повышении концентрации субстрата действие конкурентных ингибиторов можно преодолеть - молекулы конкурентного ингибитора постепенно вытесняются субстратом с активного центра фермента.
    ХАРАКТЕРИСТИКА НЕКОНКУРЕНТНЫХ (АЛЛОСТЕРИЧЕСКИХ) ИНГИБИТОРОВ

    Связываются с аллостерическим центром фермента. Происходят изменения конформации аллостерического центра, а затем, через всю молекулу, они передаются на каталитический центр. Изменение конформации каталитического центра вызывает снижение активности фермента. Поэтому неконкурентные ингибиторы уменьшают Vmax - снижают скорость протекания II-го этапа ферментативного катализа. Не влияют на Km и не изменяют сродство фермента к субстрату.

    Действие обратимых ингибиторов на кинетические константы представлено на графике зависимости 1/V от 1/[S] (график Лайнуивера-Берка) - смотрите рисунок.



    Измеряя скорость реакции при разных концентрациях субстрата в присутствии и в отсутствие ингибитора, можно не только распознать тип ингибирования, но и по степени изменения Км или Vmax количественно оценить степень сродства данного ингибитора к ферменту ("Ферменты", стр. 27-36).

    АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ ФЕРМЕНТАТИВНЫХ ПРОЦЕССОВ


    Существуют различные механизмы регуляции процессов, протекающих в организме.

    3 уровня регуляции:

    1) Самый молодой уровень филогенетически - НЕЙРОГУМОРАЛЬНАЯ регуляция (с участием центральной нервной системы, классических гормонов и гормонов местного действия)

    2) РЕГУЛЯЦИЯ НА ГЕНЕТИЧЕСКОМ УРОВНЕ - изменение скорости биосинтеза белка.

    3) Филогенетически наиболее старый уровень - АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ ФЕРМЕНТОВ.

    АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ - это регуляция, которая происходит благодаря только самим участникам реакции, то есть за счет фермента, его субстрата (или субстратов) и/или продуктов деятельности данного фермента. Фермент не только работает, но еще и сам себя регулирует.

    Механизмы автономной саморегуляции очень многочисленны, но построены на двух основных принципах.

    1) Механизмы, основанные на кинетических свойствах фермента, количественно характеризуемых Км и Vmax - это механизмы КИНЕТИЧЕСКОГО ТИПА.

    2) Второй принцип связан с аллостерическими свойствами фермента, то есть со способностью фермента угнетаться или активироваться под действием субстрата и/или продуктов. Это механизмы АЛЛОСТЕРИЧЕСКОГО ТИПА.

    Такие аллостерические механизмы есть не у каждого фермента. Они обычно накладываются на механизмы кинетического типа и определяют особенности регуляции данного фермента.

    E

    А --------> B
    Кинетика данной ферментативной реакции описывается уравнением Михаэлиса-Ментен и кривой, изображенной на рисунке.



    Если в клетку поступает мало субстрата, то он медленно и расщепляется. При изменении скорости поступления субстрата в клетку фермент работает так, чтобы поддержать концентрацию субстрата в клетке около Км.

    На этот механизм могут накладываться механизмы аллостерического типа:
    1. СУБСТРАТ или ПРОДУКТ - аллостерический ИНГИБИТОР своего фермента.



    При чрезмерном поступлении субстрата в клетку скорость утилизации субстрата все больше будет замедляться. Так происходит, когда избыток продукта реакции опасен для клетки (опаснее, чем избыток субстрата).

    2. СУБСТРАТ - аллостерический АКТИВАТОР своего фермента.


    Кинетическая кривая имеет S-образный характер, то есть имеет 2 перегиба, как кривая диссоциации оксигемоглобина. В этом случае концентрация субстрата удерживается более эффективно на постоянном уровне и в более узком диапазоне, чем в предыдущем случае.

    3. ПРОДУКТ реакции - аллостерический АКТИВАТОР своего фермента.



    Кинетическая кривая имеет лавинообразный (взрывообразный) характер. С увеличением концентрации субстрата скорость реакции, как обычно, возрастает. Это приводит к накоплению продукта, который активирует свой фермент. Это приводит к накоплению продукта, который активирует фермент, в результате продукт накапливается еще быстрее, а фермент активируется еще сильнее. Скорость реакции становится очень большой, и реакция протекает мгновенно до полного расщепления субстрата. Примеры: реакция образования фибрина из фибриногена; система иммунохимической защиты организма.
    4. ОДИН СУБСТРАТ - ДВА ФЕРМЕНТА И ДВА ПРОДУКТА.




    В общем случае кинетические кривые этих двух реакций не совпадают.



    При малых концентрациях субстрата "А" будет преимущественно протекать 1-я реакция, то есть наибольшая часть вещества "А" будет превращаться в "В", а меньшая часть - превращаться в "С". При увеличении концентрации "А" все больше субстрата станет превращаться в "С" по второму пути. При некоторой концентрации "А" (в точке пересечения кривых) скорости обеих реакций сравняются. В этой точке половина вещества "А" будет превращаться в "В", а вторая половина - в "С". Если концентрацию "А" повышать дальше, то начнет преобладать второй путь превращений - в вещество "С". Такой механизм регуляции встречается, когда опасно накопление в клетке не только избытка вещества "В", но и избытка субстрата "А". И поэтому клетка при высоких концентрациях "А" направляет его на образование безопасного продукта С. Путь из "А" в "С" - это резервный путь метаболизма (альтернативный путь). Если на такой механизм накладываются аллостерические механизмы регуляции, то они могут стать более точными. Например, если продукт "В" - аллостерический ингибитор своего фермента Е1 или аллостерический активатор фермента Е2, то переключение на резервный (альтернативный) путь будет происходить более четко.
    5. ОДИН СУБСТРАТ, ДВА ФЕРМЕНТА И ОДИН ПРОДУКТ

    Одна и та же химическая реакция в организме может катализироваться разными белками-ферментами. В таком случае они называются изоферментами - это разные молекулярные формы одного и того же фермента. Они могут отличаться обычно очень незначительно. Например, в молекуле один или несколько аминокислотных остатков могут быть заменены другими. Но этого достаточно, чтобы возникли различия в значениях ИЭТ, оптимальном значении рН для действия фермента (рН-оптимум), и в субстратной специфичности, и в величинах Vmax и Km. Называют такие ферменты, как правило, одинаково, но добавляют к названию номер или иное дополнение (для идентификации). И в этом случае, если определять кинетику ферментативных реакций изоферментов, то кривые будут отличаться друг от друга. Если ферменты находятся в клетках разного типа, то изоферменты будут определять специфику метаболизма своих клеток.



    Но если изоферменты находятся в одной клетке, то их кинетические кривые будут сливаться в одну общую кривую, которая имеет двухступенчатую форму. Такая система регуляции работает при разных концентрациях субстрата, которые изменяются в очень широких пределах. Наличие двух изоферментов позволяет успешно превращать субстрат и при малых, и при больших концентрациях субстрата. Характер суммарной кинетической кривой приведен на рисунке.



    Конкретным примером такого типа регуляции служит пара ферментов - гексокиназа и глюкокиназа в печени. Км гексокиназы составляет около 0,02 ммоль/л. В клетках печени кроме гексокиназы есть глюкокиназа, имеющая Км=20 ммоль/л.

    В норме концентрация глюкозы в крови колеблется в пределах от 3,9 до 6,1 ммоль/л. Так как Км гексокиназы в 100 раз меньше, чем реальная концентрация глюкозы в клетке, то гексокиназа всегда работает со скоростью, близкой к Vmax. Благодаря высокому сродству к своему субстрату - глюкозе именно гексокиназа обеспечивает связывание глюкозы в печени в период голодания. На высоте пищеварения, когда концентрация глюкозы в системе воротной вены может составлять десятки ммоль/л, гексокиназа уже не справляется с превращением такого большого количества глюкозы. Наибольшая часть ее превращается глюкокиназой - мощным ферментом, Км которого достигает 20 ммоль/л. Поэтому глюкоза эффективно связывается клетками печени и в период голодания (за счет работы гексокиназы), и на высоте пищеварения (с помощью глюкокиназы). Благодаря такому механизму уровень глюкозы в крови, оттекающей от печени, поддерживается на нужном уровне при любых колебаниях ее концентрации в системе воротной вены.

    НЕРАЗВЕТВЛЕННЫЕ МУЛЬТИФЕРМЕНТНЫЕ СИСТЕМЫ

    В большинстве случаев тот или иной биохимический процесс катализируется не одним ферментом, а целой совокупностью ферментов, каждый из которых катализирует свой этап в длинной последовательности отдельных реакций этого процесса.

    Совокупность ферментов, катализирующих последовательные реакции единого процесса, называется мультиферментной системой.

    E1 E2 E3 E4 En

    А---->В----->C----->D------>....L----->M
    1. В такой системе концентрация любого промежуточного метаболита от "В" и до "L" будет поддерживаться постоянной даже в условиях значительных колебаний скорости всего процесса в целом. Концентрация любого метаболита зависит только от соотношения кинетических констант 2-х ферментов - того, который ведет к образованию этого метаболита, и того, который подвергает его следующему превращению. Например, концентрация вещества "С" зависит от кинетических констант ферментов Е» и Е3. Оба этих фермента, как и вся цепь, могут ускорять свою работу, но концентрация "С" будет оставаться неизменной. Эти механизмы регуляции мультиферментных систем поддерживают постоянство состава внутренней среды организма.

    2. В большинстве случаев величины Vmax у всех ферментов данной системы различны. Значит, у какого-то из ферментов Vmax меньше Vmax любого другого фермента. Такой фермент (с низкой Vmax) называется ЛИМИТИРУЮЩИМ ферментом данной мультиферментной системы. Именно этот фермент определяет скорость процесса в целом.

    Как правило, лимитирующими являются те ферменты, которые находятся в начале данной мультиферментной системы. Как правило, эти ферменты подвергаются воздействию регуляторных воздействий со стороны аллостерических эффекторов (в рамках автономной саморегуляции). В таких мультиферментных системах аллостерическими эффекторами бывают часто не только продукт или субстрат данной реакции, но и другие метаболиты - в особенности конечные продукты (М). Если конечный продукт оказывает активирующее действие, то этот механизм называется положительной обратной связью и процесс протекает взрывообразно - до полного исчерпания субстрата в системе.

    Если конечный продукт - ингибитор лимитирующего фермента - то говорят об отрицательной обратной связи, и при увеличении концентрации конечного продукта скорость процесса будет замедляться. Если лимитирующий фермент является одновременно и регуляторным, то его называют КЛЮЧЕВЫМ ферментом данной мультиферментной цепи.
    РАЗВЕТВЛЕННЫЕ МУЛЬТИФЕРМЕНТНЫЕ СИСТЕМЫ.

    Часто мультиферментные цепи являются разветвленными. В таких системах ключевые ферменты обычно предшествуют участкам ветвления, а сразу за разветвлением находятся ПУНКТЫ ВТОРИЧНОГО КОНТРОЛЯ, то есть такие ключевые ферменты, которые регулируют скорость реакций в своей ветви:



    В этом примере Е1 - ключевой фермент, а Е4 и Е7 - пункты вторичного контроля.


    написать администратору сайта