Главная страница
Навигация по странице:

  • Борьба с отложениями АСПВ

  • Борьба с отложением солей

  • Борьба с коррозией в подземном и наземном оборудовании

  • Борьба с механическими примесями

  • Оборудование, используемое для борьбы с осложнениями на Северо-Останинском месторождении

  • Диплом. Разработка_нефтяного_месторождения_StudentLib. Сут и газа дебитом 3,8 тыс м


    Скачать 1.52 Mb.
    НазваниеСут и газа дебитом 3,8 тыс м
    АнкорДиплом
    Дата15.05.2023
    Размер1.52 Mb.
    Формат файлаdocx
    Имя файлаРазработка_нефтяного_месторождения_StudentLib.docx
    ТипПротокол
    #1131231
    страница7 из 8
    1   2   3   4   5   6   7   8

    4.3 Мероприятия по повышению эффективности эксплуатации добывающих скважин
    При эксплуатации скважин на Северо-Останинском месторождении возникают осложнения, которые вызваны следующими причинами:

     отложения АСПВ в оборудовании, в лифтовых колоннах и выкидных линиях;

     отложения солей;

     коррозионный износ подземного и наземного оборудования

     механические примеси;

    Борьба с отложениями АСПВ

    В процессе нефтедобычи на данном месторождении возникают осложнения связанные с выпадением асфальтосмолопарафиновых веществ (АСПВ) в эксплуатационных скважинах и наземных коммуникациях. Это приводит к снижению дебита добывающих скважин, пропускной способности нефтепроводных коммуникаций, увеличению вязкости скважинной продукции и, соответственно, увеличению потерь давления за счет трения, к высоким значениям придела текучести при повторном запуске скважины. Процесс отложения парафина включает в себя 3 стадии: отделение парафина, рост кристаллов парафина и отложение парафина.

    Среди основных факторов влияющие на образование парафина, можно выделить следующие:

     снижение температуры нефти;

     потеря летучих компонентов, которые действуют как растворители;

     постороннее вещество, вызывающие отложение парафинов;

     поверхностные условия оборудования;

     скорость потока жидкости.

    Для удаления АСПО из эксплуатационных скважин Северо-Останинского месторождения используют следующие методы:

     Тепловые (обработка скважин горячей нефтью или паром);

     Механические (применение скребков);

    - Тепловые методы. Самыми распространенными способами в промысловой практике являются промывка скважины горячей нефтью при помощи агрегата АДПМ и прогрев паром от ППУ. Но для скважин, оборудованных УЭЦН, такой способ опасен тем, что нарушается полимерная изоляция питающего электрокабеля, поэтому температура теплоносителя не должна быть более 70 ОС. Соответственно, с учетом тепловых потерь до требуемой температуры удается прогреть только 220-280 м НКТ. Но температура насыщения парафином может быть достигнута и на большей глубине, где удаление АСПО будет неполным. Поэтому на Северо-Останинском месторождении используется промывка горячей нефтью выкидные линии до и после АГЗУ при помощи агрегата АДПМ (рис. 4.10) и жестокой линии, которая присоединяется с помощью быстро соединяющего резьбового соединения (БРС) к пропарочнику выкидной линии скважины. Обработка паром устья скважин и выкидных линий агрегатом ППУА 1600/100М (рис. 4.11).

    - Механический метод. Скребки позволяют очистить внутреннюю поверхность НКТ фонтанных скважин и скважин, оборудованных УЭЦН, спускоподъемные операции выполняются с помощью лебедки и скребковой проволоки. На данном месторождении, для очистки от парафина насосно-компрессорных труб диаметром 73 мм применяются скребки С-00.00 производства ЗАО «Технология» г. Воткинск, «Кыргач-5», «Кыргач-6» («ТатНИПИнефть»), лебедки Сулейманова для ЭЦН («Черногорнефть»), полуавтоматической установки ПАДУС-01 для ЭЦН («Прецезион»), (рис. 4.13, рис. 4.14). Безусловное достоинство скребков - качество очистки не зависит от состава загрязнений, температуры их плавления.

    - Химический метод. В основе способа лежат методы предупреждения АСПО с использованием ингибиторов и методы удаления уже образовавшихся парафиновых отложений в виде дисперсной взвеси, транспортируемой потоком флюидов. В качестве ингибиторов парафиноотложения применяются отечественные и зарубежные реагенты, например, ИНПАР, СОНПАР, СНПХ-7843 и др., а также растворители - удалители АСПО: гексановая фракция, СНПХ-7 р-1, СНПХ-7850, стабильный газовый конденсат, нефрас и др. Могут быть использованы ингибиторы парафиноотложения, композиционные реагенты ИП-1, ИП-2, ИП-3, ДН-5, присадки комплексного действия - ингибитор-депрессор ИХН-1 и др.

    - Метод электротеплового воздействия. Основан на использовании электрических греющих устройств, обеспечивающих расплавление АСПО и повышение температуры среды выше температуры конденсации АСПО или образования газогидратов. Перспективным представляется использование постоянно действующих саморегулируемых греющих кабелей ДНН Райхем фирмы Tyco Thermal Controls (США) и аналогов российского производства - системы с греющим кабелем «Тепломаг» (ОАО «Псковгеокабель»), опускаемых в НКТ до глубины начала выпадения АСПВ или газогидратов и обеспечивающих прогрев продукции скважин до заданной температуры (в пределах 30-90 оС. С учетом высокого энергопотребления (до 100кВт/скв.) таких систем их применение целесообразно при наличии автономного источника электроэнергии или наличии мощного источника внешнего энергоснабжения.

    На данный момент метод электротеплового воздействия и химический метод на Северо-Останинском месторождении из-за высоких экономических затрат не применяются. Схема подачи химических реагентов на выкидные линии скважин с помощью дозировочных насосов типа НД (рис. 4.12), имеется, но не используется.

    Борьба с отложением солей

    Солеотложения представляют собой накопление твердых неорганических осадков в порах пласта, на стенках труб, в щелях хвостовика, скважинном и наземном оборудовании, что приводит к засорению скважины и снижению притока жидкости. Основной причиной выпадения осадка служит вода, добываемая вместе с нефтью. Выпадение вещества в осадок происходит тогда, когда концентрация этого вещества или иона превышает равновесную, а причиной может служить смешение вод различного состава, несовместимых друг с другом, перенасыщение в результате изменения термобарических условий в скважине или насосе, испарение воды и др.

    Пластовые воды Северо-Останинского месторождения являются средненасыщенными солевыми растворами (диапазон значений по минерализации составляет 9,1 - 63,1 г/л, в среднем 36,1 г/л), относящимися к хлоридным натриевым водам хлоркальциевого типа. Выпадающие из них соли отлагаются в пласте, подземном оборудовании, трубопроводах. Отложение солей приводят к снижению МРП работы скважин и потере объемов добычи нефти.

    Эффективность предупреждения солевых отложений зависит от:

    правильного подбора ингибитора;

     выбора технологии ингибирования;

     точности выполнения технологии подачи ингибитора;

     периодичности обработки скважин.

    Выбор ингибитора производится на основе анализа химического состава образующих солевых осадков и технологических свойств реагента, таких как ингибирующая активность, агрегатное состояние, совместимость с пластовой водой, коррозионная агрессивность, термическая стабильность, отсутствие влияние на подготовку нефти.

    ОАО «ТомскНИПИнефть ВНК» рекомендует использовать ингибиторы карбонатных отложений отечественного производства - ОЭДФ, СНПХ-5301, ПАФ-13А, Дифонат, НТФ и ингибиторы зарубежных фирм - SP-181, SP-203, Деквест 2042, Visko-953R, корексит 7642.

    На Северо-Останинском месторождении также предусмотрена схема подачи ингибитора на выкидные линии скважин с помощью дозировочных насосов типа НД (рис. 4.12), но на данный момент не используется.

    Борьба с коррозией в подземном и наземном оборудовании

    Коррозия оборудования и сооружений в нефтегазовой промышленности является одной из основных причин снижения их работоспособности, вызывает огромные экономические потери и экологический ущерб. Это связано с большой металлоемкостью оборудования и сооружений, наличием высоко агрессивных сред, из-за гетерогенности добываемой продукции, и содержанием в ней кислых газов H2S, СО2. Поэтому надежное прогнозирование работоспособности промыслового оборудования и разработка эффективных способов защиты от коррозии должны использоваться на системном анализе условий и кинетики коррозионных процессов.

    При значительном обводнении добываемой продукции (свыше 70%) наблюдается тенденция роста содержания H2S. Значительное повреждение могут быть обусловлены процессами микробиологического характера. Биоценоз развивается, в основном, в призабойной зоне нагнетательных скважин, затем продвигается по продуктивным пластам к добывающим скважинам, приводя к выносам на поверхность, с потоком высоко обводненной продукции, сероводорода и сульфатвосстанавливающих бактерий (СВБ). Как следствие, присутствие СВБ и биогенного сероводорода проявляется выходами из строя внутрискважинного оборудования, порывами на выкидных линиях, промысловых коллекторах, в системах нефтесбора и поддержания пластового давления.

    ОАО «ТомскНИПИнефть ВНК» рекомендует следующие мероприятия по борьбе с коррозией:

    1) Использование НКТ повышенной группы прочности - Е и Р.

    2) Обработка внутренних покрытий труб НКТ эпоксидной краской, а также фенольные, эпоксиднофенольные, новолачные, нейлоновые, уретановые и полиэтиленовые покрытия.

    При применении электропогружных установок на Северо-Останинском месторождении, также рекомендуют наносить полимерное покрытие на элементы оборудования:

     антиржавчина + полимерное покрытие - «Битурэл» и «Битурэл-Супер» и полимер-битумная мастика;

     полиуретановое покрытие «Цинотан + Ферротан» и цинконаполненная грунтовка на основе уретанового связующего;

     композиция на основе уретанового связующего, содержащего «железную слюдку»;

     применении технологии нитроцементирования наружной поверхности узлов ПЭД;

     использование биметаллической конструкции, с оболочкой из коррозионностойкой стали;

     изготовление опытной партии заготовок корпусов из коррозионно-стойкой стали.

    3) Глушение скважин производить солевым раствором NaCl, KCl и K2SO3 (поташ) и другими жидкостями в соответствии с технологическими регламентами.

    4) Применение ингибиторов коррозии с помощью дозировочных устройств.

    ) Применение активной электрохимической защиты, которая подразделяется: протекторная и, собственно, катодная защита с помощью станции катодной защиты (СКЗ).

    Протекторная защита заключается в использовании в качестве жертвенного анода металла, имеющего более высокую электроотрицательность относительно защищаемого сооружения. В качестве протектора используется сплав алюминия с добавлением (порядка 10%) цинка (для устранения пассивации), ну и, в идеале, небольшим содержанием индия (для активации) и галия (стабилизация). Следует ограничиться активной катодной защитой (от СКЗ) лишь обсадных колонн скважинных сооружений, где она, без сомнений, положительно зарекомендовала себя в достаточно продолжительном временном интервале. Для защиты же погружного оборудования наиболее оправдано применение протекторной защиты.

    Из выше перечисленных рекомендаций на Северо-Останинском месторождении используют НКТ с внутренней обработкой эпоксидной краской, предусмотрена схема дозировочной подачи при помощи насосов дозаторов типа НД, хим. реагентов на выкидные линии скважин, и в нефтесборный коллектор. Нефтесборный коллектор оснащен электрохимической защитой (ЭХЗ) протекторной. Глушение скважин производится солевым раствором NaCl, KCl без K2SO3 (поташ).

    Борьба с механическими примесями

    Присутствие механических примесей в продукции нефтяных скважин является серьезным осложнением при фонтанной эксплуатации и механизированным способом за счет уменьшения МРП насосов. Механические примеси могут являться продуктами разрушения коллектора, загрязнениями с насосно-компрессорных труб (продукты коррозии, песок, солеотложения), либо результатом обратного выноса пропана после ГРП. Допустимые концентрации механических примесей при эксплуатации фонтанным и механизированным способом не должны превышать 0,3 г/л. С учетом вовлечения в разработку новых участков месторождений, сложности строения и неоднородности пластов, а также планируемых ГТМ следует предусмотреть защиту от этого типа осложнений.

    ОАО «ТомскНИПИнефть ВНК» рекомендует следующие мероприятия по борьбе с механическими примесями:

     подбор оптимальных значений депрессии на пласт, позволяющих достичь максимального дебита без разрушения рыхлых пропластков с выносом дисперсной породы;

     при производстве сложных ремонтов, ГРП, кислотных обработок, а также при выводе скважин из длительного бездействия, предусмотреть качественную подготовку и промывку скважин перед спуском УЭЦН, например, с использованием комплекта гибких НКТ - койлтюбинг. Для уменьшения объема перевозок и расходов рекомендуется применение гидроциклонной очистки промывочной жидкости. Разработанная конструкция на основе ило-пескоотделителя ИГ-45М с промывочным агрегатом ПА-80 обеспечивает замкнутый цикл циркуляции, прямой или обратной промывки, очистку от механических примесей диаметром более 0,01 мм на 95%;

     применение жидкостей глушения скважин, очищенных от механических примесей в процессе их приготовления. Блок очистки жидкости БОЖ-1 (изготовитель ОАО «Нефтемаш», г. Тюмень) используется на растворных узлах, его производительность 50 м3/час, КВЧ после фильтрации не более 20 мг/л. Есть и другие аналоги.

     очистка от АСПО, продуктов коррозии, песка, солей механическим или абразивным методами (щетки, пескоструй, дробеструй), дефектоскопия и отбраковка поднятых в процессе ремонта скважин НКТ.

     применение УЭЦН в коррозионно-износостойком исполнении путем использования более стойких сталей и сплавов (типа «Нирезист»), упрочнения и создания защитной пленки на поверхности обычных стальных труб плазменным, электрохимическим или др. способами.

     применение при необходимости (по итогам анализов добываемых флюидов) индивидуальных механических фильтров для УЭЦН (проволочных и сетчатых). Для УЭЦН рекомендуется применение механических фильтров, устанавливаемых через пакер на забое, либо на приеме насоса (фильтры Meshrite Screen, REDA Schlumberger, апробированные на Приобском месторождении ОАО «Юганскнефтегаз»; фильтры типа ЖНШ, производства ОАО Новомет-Пермь, апробированные на месторождениях ОАО «Газпромнефть» в Ноябрьске). Этот вопрос следует решать по итогам первого года эксплуатации скважин. установка в интервале перфорации гравийных забойных фильтров - при интенсивном выносе проппанта или пластового песка (КВЧ более 500 мг/л) в течение длительного срока (более 6 месяцев после ГТМ), либо при быстрой кольматации проволочных и сетчатых механических фильтров (менее 1-2 мес.); комплекс подземного оборудования ОАО «Тяжпрессмаш» (Рязань) для сооружения гравийного фильтра включает пакеры, проволочный или щелевой фильтр, устройства для намыва гравия прямой или обратной циркуляцией и последующих промывок фильтра. Известны также комплексные технологии предотвращения выноса песка типа FracPac (Halliburton Energy Services), сочетающие локальные ГРП пласта с гравийными забойными фильтрами, обеспечивающими длительную эксплуатацию скважин без существенного снижения дебита.

     применение кожуха для насосной эксплуатации скважин ниже интервала перфорации обсадной колонны.

    Для эксплуатации скважин ниже интервала перфорации обсадной колонны двигатели серийных насосов габаритов 5 и 5А комплектуются кожухом, включающим: входной модуль специальной конструкции, центратор и переводник под «хвостовик» из труб диаметром 60 или 73 мм по ГОСТ 633-80.

    Оборудование, используемое для борьбы с осложнениями на Северо-Останинском месторождении

    Агрегат АДПМ 12/150 предназначен для депарафинизации нефтяных скважин горячей нефтью при температуре окружающего воздуха от - 45°С до +50°С. Применяется на нефтепромыслах. При необходимости может использоваться для горячего водоснабжения в технических целях. Агрегат АДПМ включает в себя следующие основные части: нагреватель (котел), нагнетательный насос, вентилятор высокого давления, трансмиссию, запорную и регулирующую арматуру, технологические и вспомогательные трубопроводы, электрооборудование и контрольно-измерительные приборы. Котел в свою очередь состоит из «змеевиков» горизонтально крученой трубы (в виде спирали) по которым циркулирует нефть. Змеевики делятся на «внутренние», «наружные», «донные» и «потолочные». В центре змеевиков располагается «горелочное устройство» с помощью которого и происходит нагрев нефти до температуры 150 градусов Цельсия. Горелочное устройство различается на «двух сопловое» и «трех сопловое» (то есть с двумя и тремя соплами для пламени). Поверх змеевиков располагаются два кожуха. Все оборудование размещено на платформе, которая прикреплена к раме автомобиля. Агрегат АДПМ устанавливается на следующие шасси: УРАЛ-43203, УРАЛ-5557.

    Привод механизмов агрегата осуществляется от тягового двигателя автомобиля, через коробку отбора мощности. Наличие вспомогательных трубопроводов дает возможность быстро подключить агрегат к скважине и емкости с нефтью.

    Агрегат АДПМ легко запускается в работу, нефть нагревается до установленной температуры за 15-20 минут с момента пуска. АДПМ прост по конструкции, имеет хороший доступ к оборудованию и механизмам, единый пульт управления, удобен в эксплуатации.

    Принцип работы: Через всасывающий рукав, подключенный к автоцистерне или промысловой емкости, нефть забирается плунжерным насосом высокого давления агрегата АДПМ и прокачивается до необходимой температуры. Нагретая нефть через вспомогательные трубопроводы нагнетается в скважину, где расплавляет имеющиеся отложения парафина. Управление и контроль, за работой агрегата АДПМ осуществляется из кабины водителя.

    ППУА 1600/100М на шасси Урал

    Имеет возможность работы в двух режимах. При I режиме работы установка вырабатывает насыщенный пар высокого давления до 10 МПа, при работе во II режиме давление пара не превышает 0,6 МПа.Данные режимы работы используются в зависимости от области применения данного агрегата. При эксплуатации на нефтяных скважинах для удаления отложений парафина (депарафинизация), применим I режим, так как необходимо более высокое давление. II режим применяется для мойки и очистки нефтяного и различного рода оборудования, размораживание верхних слоев почвы в зимнее время года для проведения земляных работ.

    Обозначение 1600/100 указывает на то, что агрегат вырабатывает 1600 килограмм в час, давлением 100 атмосфер. Установка выпускается в следующих модификациях: А 1000/5; ППУА 1000/12; ППУА 1600/100; ППУА 1800/100 и ППУА 2000/100. обработка пара осуществляется за счет парового котла. Внутри котла находятся «змеевики» горизонтально крученая труба (в виде спирали). По змеевикам циркулирует вода. Змеевики делятся на «внутренние», «наружные» и «потолочные». В центре змеевиков располагается «горелочное устройство» с помощью которого и происходит нагрев воды до состояния пара, температурой 310 градусов Цельсия. Горелочное устройство различается на «двухсопловое» и «трехсопловое» (то есть с двумя и тремя отверстиями для пламени). Также в установку входят: емкость для воды, емкость для топлива, водяной насос, приборы контроля и измерения.

    Работа установки осуществляется при помощи дистанционной связи, которая имеется в кабине водителя и представляет собой щиток приборов, за счет которых можно не только следить, но и контролировать процесс работы всей установки в целом. По желанию устанавливается наиболее современный дистанционный сигнализатор ДС-Б-070. Все оборудование размещается на монтажной раме, прикрепленной к лонжеронам автомобиля, накрыто кунгом. Данный агрегат выпускается как в стационарном виде с использованием электрического привода, так и на шасси: Камаз, Урал, Краз, приводом в которых является двигатель автомобиля через трансмиссию.

    - Производительность по пару 1600 кг/час.

    Рабочее давление от 0,5 до 10 МПа.

    Максимальная температура пара 310°C

    Топливо для парового котла дизельное Время работы в автономном режиме при полной заправке цистерны на 3,5 часа. В установке используется хорошо зарекомендовавший себя плунжерный насос ПТ-32, который по сравнению с широко используемыми прочими насосами имеет ряд преимуществ:

    Более высокая производительность.

    Работа на малых оборотах, что в свою очередь увеличивает срок службы.

    Значительно, низкий уровень шума.

    Возможно исполнение установки (ППУ) ППУА с использованием электропривода, с использованием природного газа в качестве топлива для парового котла.

    Насос-дозатор плунжерного типа НД

    Плунжерные дозирующие насосы обычно используют при необходимости создания мощного напора дозируемой среды (до 20-30 МПа и более) или если требуется большой объем дозируемого реагента. Они предназначены для объемного напорного дозирования нейтральных, агрессивных, токсичных и вредных жидкостей, эмульсий и суспензий с высокой кинематической вязкостью (порядка 10-4-10-5 м2/с), с плотностью до 2000 кг/м3. В зависимости от типа насоса (диаметр поршня, характеристика насоса и число ходов поршня) подача может изменяться от нескольких десятых миллилитра до нескольких тысяч литров в час.

    Принцип действия плунжерных насосов основан на возвратно-поступательном движении одного цельного цилиндра (поршня) внутри другого пустотелого цилиндра (корпуса), в результате чего внутри второго цилиндра создается эффект разрежения / нагнетания. В зависимости от положения полнотелого цилиндра (поршня) в камере насоса (корпусе) создается либо давление разрежения (процесс всасывания), либо создание давления в напорной линии (процесс нагнетания). Процесс регулируется с помощью системы всасывающих и нагнетательных клапанов. Этот насос обеспечивает очень точное дозирование, т.к. и поршень, и рабочая камера, изготовлены из материалов, практически не подверженных каким-либо механическим изменениям в процессе эксплуатации насоса (за исключением процессов коррозии и механического износа движущихся частей).

    Конструктивная особенность таких насосов-дозаторов - непосредственный контакт перекачиваемой среды не только с материалом рабочей камеры, но и с поршнем. Поэтому при подборе материалов, из которых будет изготовлена рабочая камера и поршень, особое внимание надо обратить не только на химическую совместимость материалов с перекачиваемой среды, но и на содержание в последней абразивных веществ. Наличие абразивов в дозируемой жидкости (особенно микронных размеров) может привести к их накоплению в полости, образующейся между цилиндрическими поверхностями поршня и рабочей камеры, что вызовет дополнительный механический износ, а, в конечном счете, нарушение как точности дозирования (вплоть до «заклинивания» насоса), так и герметичности рабочей камеры. Для защиты поршня от воздействия дозируемых агрессивных реагентов плунжерные насосы оснащаются сильфонами из высоколегированной стали или мембранами из фторопласта, разделяющими проточную часть насоса и приводную камеру с движущимся в ней поршнем (плунжером). насосов чаще всего используется механический тип привода с передачей вращательного момента электродвигателя на возвратно-поступательное движение поршня через различные модификации кривошипно-шатунных механизмов.

    В таблице 4.8 приведена техническая характеристика насоса дозатора плунжерного типа НД.
    Таблица 4.8 Техническая характеристика насоса дозатора типа НД

    Типоразмер насоса

    Подача, л/ч

    Давление на выходе из насоса

    Число двойных ходов плунжера в мин.

    Исполнение

    Тип двигателя, мощность, кВт

    Габаритные размеры (L x B x H), мм

    Масса, кг. Исполнение

    НД 10/100

    10

    100

    100

    Д14А(В); К14А(В)

    АИР 63А4У3; 0,25

    445х190х 445

    22,9

    34,7


    Скребок динамический

    Предназначен, для очистки насосно-компрессорных труб от парафина и других отложений в фонтанирующих скважинах и скважинах оборудованных электроцентробежными насосами (ЭЦН).

    Применение:

    - периодическая очистка насосно-компрессорных труб в добывающих скважинах от парафиновых и других отложений;

    удаление остатков отложений при других способах очистки скважин.

    Скребок динамический состоит из скребка нижнего, груза утяжелителя, скребка верхнего и рапсокета. Оптимальное сочетание диаметров скребка уточняется опытным путем. Рапсокет используется для крепления к проволоке d 1,8…2,5 мм, посредством которой устройство присоединяется к лебедке.

    Скребок крепится на исследовательскую проволоку 8, устанавливается в устройство 4, открывают лубрикаторную задвижку 6, затем буферную 7, производят спуск, затем подъем скребка при помощи исследовательской проволоки и геофизической лебедки.
    1   2   3   4   5   6   7   8


    написать администратору сайта