Диплом. Разработка_нефтяного_месторождения_StudentLib. Сут и газа дебитом 3,8 тыс м
Скачать 1.52 Mb.
|
4.3 Мероприятия по повышению эффективности эксплуатации добывающих скважин При эксплуатации скважин на Северо-Останинском месторождении возникают осложнения, которые вызваны следующими причинами: отложения АСПВ в оборудовании, в лифтовых колоннах и выкидных линиях; отложения солей; коррозионный износ подземного и наземного оборудования механические примеси; Борьба с отложениями АСПВ В процессе нефтедобычи на данном месторождении возникают осложнения связанные с выпадением асфальтосмолопарафиновых веществ (АСПВ) в эксплуатационных скважинах и наземных коммуникациях. Это приводит к снижению дебита добывающих скважин, пропускной способности нефтепроводных коммуникаций, увеличению вязкости скважинной продукции и, соответственно, увеличению потерь давления за счет трения, к высоким значениям придела текучести при повторном запуске скважины. Процесс отложения парафина включает в себя 3 стадии: отделение парафина, рост кристаллов парафина и отложение парафина. Среди основных факторов влияющие на образование парафина, можно выделить следующие: снижение температуры нефти; потеря летучих компонентов, которые действуют как растворители; постороннее вещество, вызывающие отложение парафинов; поверхностные условия оборудования; скорость потока жидкости. Для удаления АСПО из эксплуатационных скважин Северо-Останинского месторождения используют следующие методы: Тепловые (обработка скважин горячей нефтью или паром); Механические (применение скребков); - Тепловые методы. Самыми распространенными способами в промысловой практике являются промывка скважины горячей нефтью при помощи агрегата АДПМ и прогрев паром от ППУ. Но для скважин, оборудованных УЭЦН, такой способ опасен тем, что нарушается полимерная изоляция питающего электрокабеля, поэтому температура теплоносителя не должна быть более 70 ОС. Соответственно, с учетом тепловых потерь до требуемой температуры удается прогреть только 220-280 м НКТ. Но температура насыщения парафином может быть достигнута и на большей глубине, где удаление АСПО будет неполным. Поэтому на Северо-Останинском месторождении используется промывка горячей нефтью выкидные линии до и после АГЗУ при помощи агрегата АДПМ (рис. 4.10) и жестокой линии, которая присоединяется с помощью быстро соединяющего резьбового соединения (БРС) к пропарочнику выкидной линии скважины. Обработка паром устья скважин и выкидных линий агрегатом ППУА 1600/100М (рис. 4.11). - Механический метод. Скребки позволяют очистить внутреннюю поверхность НКТ фонтанных скважин и скважин, оборудованных УЭЦН, спускоподъемные операции выполняются с помощью лебедки и скребковой проволоки. На данном месторождении, для очистки от парафина насосно-компрессорных труб диаметром 73 мм применяются скребки С-00.00 производства ЗАО «Технология» г. Воткинск, «Кыргач-5», «Кыргач-6» («ТатНИПИнефть»), лебедки Сулейманова для ЭЦН («Черногорнефть»), полуавтоматической установки ПАДУС-01 для ЭЦН («Прецезион»), (рис. 4.13, рис. 4.14). Безусловное достоинство скребков - качество очистки не зависит от состава загрязнений, температуры их плавления. - Химический метод. В основе способа лежат методы предупреждения АСПО с использованием ингибиторов и методы удаления уже образовавшихся парафиновых отложений в виде дисперсной взвеси, транспортируемой потоком флюидов. В качестве ингибиторов парафиноотложения применяются отечественные и зарубежные реагенты, например, ИНПАР, СОНПАР, СНПХ-7843 и др., а также растворители - удалители АСПО: гексановая фракция, СНПХ-7 р-1, СНПХ-7850, стабильный газовый конденсат, нефрас и др. Могут быть использованы ингибиторы парафиноотложения, композиционные реагенты ИП-1, ИП-2, ИП-3, ДН-5, присадки комплексного действия - ингибитор-депрессор ИХН-1 и др. - Метод электротеплового воздействия. Основан на использовании электрических греющих устройств, обеспечивающих расплавление АСПО и повышение температуры среды выше температуры конденсации АСПО или образования газогидратов. Перспективным представляется использование постоянно действующих саморегулируемых греющих кабелей ДНН Райхем фирмы Tyco Thermal Controls (США) и аналогов российского производства - системы с греющим кабелем «Тепломаг» (ОАО «Псковгеокабель»), опускаемых в НКТ до глубины начала выпадения АСПВ или газогидратов и обеспечивающих прогрев продукции скважин до заданной температуры (в пределах 30-90 оС. С учетом высокого энергопотребления (до 100кВт/скв.) таких систем их применение целесообразно при наличии автономного источника электроэнергии или наличии мощного источника внешнего энергоснабжения. На данный момент метод электротеплового воздействия и химический метод на Северо-Останинском месторождении из-за высоких экономических затрат не применяются. Схема подачи химических реагентов на выкидные линии скважин с помощью дозировочных насосов типа НД (рис. 4.12), имеется, но не используется. Борьба с отложением солей Солеотложения представляют собой накопление твердых неорганических осадков в порах пласта, на стенках труб, в щелях хвостовика, скважинном и наземном оборудовании, что приводит к засорению скважины и снижению притока жидкости. Основной причиной выпадения осадка служит вода, добываемая вместе с нефтью. Выпадение вещества в осадок происходит тогда, когда концентрация этого вещества или иона превышает равновесную, а причиной может служить смешение вод различного состава, несовместимых друг с другом, перенасыщение в результате изменения термобарических условий в скважине или насосе, испарение воды и др. Пластовые воды Северо-Останинского месторождения являются средненасыщенными солевыми растворами (диапазон значений по минерализации составляет 9,1 - 63,1 г/л, в среднем 36,1 г/л), относящимися к хлоридным натриевым водам хлоркальциевого типа. Выпадающие из них соли отлагаются в пласте, подземном оборудовании, трубопроводах. Отложение солей приводят к снижению МРП работы скважин и потере объемов добычи нефти. Эффективность предупреждения солевых отложений зависит от: правильного подбора ингибитора; выбора технологии ингибирования; точности выполнения технологии подачи ингибитора; периодичности обработки скважин. Выбор ингибитора производится на основе анализа химического состава образующих солевых осадков и технологических свойств реагента, таких как ингибирующая активность, агрегатное состояние, совместимость с пластовой водой, коррозионная агрессивность, термическая стабильность, отсутствие влияние на подготовку нефти. ОАО «ТомскНИПИнефть ВНК» рекомендует использовать ингибиторы карбонатных отложений отечественного производства - ОЭДФ, СНПХ-5301, ПАФ-13А, Дифонат, НТФ и ингибиторы зарубежных фирм - SP-181, SP-203, Деквест 2042, Visko-953R, корексит 7642. На Северо-Останинском месторождении также предусмотрена схема подачи ингибитора на выкидные линии скважин с помощью дозировочных насосов типа НД (рис. 4.12), но на данный момент не используется. Борьба с коррозией в подземном и наземном оборудовании Коррозия оборудования и сооружений в нефтегазовой промышленности является одной из основных причин снижения их работоспособности, вызывает огромные экономические потери и экологический ущерб. Это связано с большой металлоемкостью оборудования и сооружений, наличием высоко агрессивных сред, из-за гетерогенности добываемой продукции, и содержанием в ней кислых газов H2S, СО2. Поэтому надежное прогнозирование работоспособности промыслового оборудования и разработка эффективных способов защиты от коррозии должны использоваться на системном анализе условий и кинетики коррозионных процессов. При значительном обводнении добываемой продукции (свыше 70%) наблюдается тенденция роста содержания H2S. Значительное повреждение могут быть обусловлены процессами микробиологического характера. Биоценоз развивается, в основном, в призабойной зоне нагнетательных скважин, затем продвигается по продуктивным пластам к добывающим скважинам, приводя к выносам на поверхность, с потоком высоко обводненной продукции, сероводорода и сульфатвосстанавливающих бактерий (СВБ). Как следствие, присутствие СВБ и биогенного сероводорода проявляется выходами из строя внутрискважинного оборудования, порывами на выкидных линиях, промысловых коллекторах, в системах нефтесбора и поддержания пластового давления. ОАО «ТомскНИПИнефть ВНК» рекомендует следующие мероприятия по борьбе с коррозией: 1) Использование НКТ повышенной группы прочности - Е и Р. 2) Обработка внутренних покрытий труб НКТ эпоксидной краской, а также фенольные, эпоксиднофенольные, новолачные, нейлоновые, уретановые и полиэтиленовые покрытия. При применении электропогружных установок на Северо-Останинском месторождении, также рекомендуют наносить полимерное покрытие на элементы оборудования: антиржавчина + полимерное покрытие - «Битурэл» и «Битурэл-Супер» и полимер-битумная мастика; полиуретановое покрытие «Цинотан + Ферротан» и цинконаполненная грунтовка на основе уретанового связующего; композиция на основе уретанового связующего, содержащего «железную слюдку»; применении технологии нитроцементирования наружной поверхности узлов ПЭД; использование биметаллической конструкции, с оболочкой из коррозионностойкой стали; изготовление опытной партии заготовок корпусов из коррозионно-стойкой стали. 3) Глушение скважин производить солевым раствором NaCl, KCl и K2SO3 (поташ) и другими жидкостями в соответствии с технологическими регламентами. 4) Применение ингибиторов коррозии с помощью дозировочных устройств. ) Применение активной электрохимической защиты, которая подразделяется: протекторная и, собственно, катодная защита с помощью станции катодной защиты (СКЗ). Протекторная защита заключается в использовании в качестве жертвенного анода металла, имеющего более высокую электроотрицательность относительно защищаемого сооружения. В качестве протектора используется сплав алюминия с добавлением (порядка 10%) цинка (для устранения пассивации), ну и, в идеале, небольшим содержанием индия (для активации) и галия (стабилизация). Следует ограничиться активной катодной защитой (от СКЗ) лишь обсадных колонн скважинных сооружений, где она, без сомнений, положительно зарекомендовала себя в достаточно продолжительном временном интервале. Для защиты же погружного оборудования наиболее оправдано применение протекторной защиты. Из выше перечисленных рекомендаций на Северо-Останинском месторождении используют НКТ с внутренней обработкой эпоксидной краской, предусмотрена схема дозировочной подачи при помощи насосов дозаторов типа НД, хим. реагентов на выкидные линии скважин, и в нефтесборный коллектор. Нефтесборный коллектор оснащен электрохимической защитой (ЭХЗ) протекторной. Глушение скважин производится солевым раствором NaCl, KCl без K2SO3 (поташ). Борьба с механическими примесями Присутствие механических примесей в продукции нефтяных скважин является серьезным осложнением при фонтанной эксплуатации и механизированным способом за счет уменьшения МРП насосов. Механические примеси могут являться продуктами разрушения коллектора, загрязнениями с насосно-компрессорных труб (продукты коррозии, песок, солеотложения), либо результатом обратного выноса пропана после ГРП. Допустимые концентрации механических примесей при эксплуатации фонтанным и механизированным способом не должны превышать 0,3 г/л. С учетом вовлечения в разработку новых участков месторождений, сложности строения и неоднородности пластов, а также планируемых ГТМ следует предусмотреть защиту от этого типа осложнений. ОАО «ТомскНИПИнефть ВНК» рекомендует следующие мероприятия по борьбе с механическими примесями: подбор оптимальных значений депрессии на пласт, позволяющих достичь максимального дебита без разрушения рыхлых пропластков с выносом дисперсной породы; при производстве сложных ремонтов, ГРП, кислотных обработок, а также при выводе скважин из длительного бездействия, предусмотреть качественную подготовку и промывку скважин перед спуском УЭЦН, например, с использованием комплекта гибких НКТ - койлтюбинг. Для уменьшения объема перевозок и расходов рекомендуется применение гидроциклонной очистки промывочной жидкости. Разработанная конструкция на основе ило-пескоотделителя ИГ-45М с промывочным агрегатом ПА-80 обеспечивает замкнутый цикл циркуляции, прямой или обратной промывки, очистку от механических примесей диаметром более 0,01 мм на 95%; применение жидкостей глушения скважин, очищенных от механических примесей в процессе их приготовления. Блок очистки жидкости БОЖ-1 (изготовитель ОАО «Нефтемаш», г. Тюмень) используется на растворных узлах, его производительность 50 м3/час, КВЧ после фильтрации не более 20 мг/л. Есть и другие аналоги. очистка от АСПО, продуктов коррозии, песка, солей механическим или абразивным методами (щетки, пескоструй, дробеструй), дефектоскопия и отбраковка поднятых в процессе ремонта скважин НКТ. применение УЭЦН в коррозионно-износостойком исполнении путем использования более стойких сталей и сплавов (типа «Нирезист»), упрочнения и создания защитной пленки на поверхности обычных стальных труб плазменным, электрохимическим или др. способами. применение при необходимости (по итогам анализов добываемых флюидов) индивидуальных механических фильтров для УЭЦН (проволочных и сетчатых). Для УЭЦН рекомендуется применение механических фильтров, устанавливаемых через пакер на забое, либо на приеме насоса (фильтры Meshrite Screen, REDA Schlumberger, апробированные на Приобском месторождении ОАО «Юганскнефтегаз»; фильтры типа ЖНШ, производства ОАО Новомет-Пермь, апробированные на месторождениях ОАО «Газпромнефть» в Ноябрьске). Этот вопрос следует решать по итогам первого года эксплуатации скважин. установка в интервале перфорации гравийных забойных фильтров - при интенсивном выносе проппанта или пластового песка (КВЧ более 500 мг/л) в течение длительного срока (более 6 месяцев после ГТМ), либо при быстрой кольматации проволочных и сетчатых механических фильтров (менее 1-2 мес.); комплекс подземного оборудования ОАО «Тяжпрессмаш» (Рязань) для сооружения гравийного фильтра включает пакеры, проволочный или щелевой фильтр, устройства для намыва гравия прямой или обратной циркуляцией и последующих промывок фильтра. Известны также комплексные технологии предотвращения выноса песка типа FracPac (Halliburton Energy Services), сочетающие локальные ГРП пласта с гравийными забойными фильтрами, обеспечивающими длительную эксплуатацию скважин без существенного снижения дебита. применение кожуха для насосной эксплуатации скважин ниже интервала перфорации обсадной колонны. Для эксплуатации скважин ниже интервала перфорации обсадной колонны двигатели серийных насосов габаритов 5 и 5А комплектуются кожухом, включающим: входной модуль специальной конструкции, центратор и переводник под «хвостовик» из труб диаметром 60 или 73 мм по ГОСТ 633-80. Оборудование, используемое для борьбы с осложнениями на Северо-Останинском месторождении Агрегат АДПМ 12/150 предназначен для депарафинизации нефтяных скважин горячей нефтью при температуре окружающего воздуха от - 45°С до +50°С. Применяется на нефтепромыслах. При необходимости может использоваться для горячего водоснабжения в технических целях. Агрегат АДПМ включает в себя следующие основные части: нагреватель (котел), нагнетательный насос, вентилятор высокого давления, трансмиссию, запорную и регулирующую арматуру, технологические и вспомогательные трубопроводы, электрооборудование и контрольно-измерительные приборы. Котел в свою очередь состоит из «змеевиков» горизонтально крученой трубы (в виде спирали) по которым циркулирует нефть. Змеевики делятся на «внутренние», «наружные», «донные» и «потолочные». В центре змеевиков располагается «горелочное устройство» с помощью которого и происходит нагрев нефти до температуры 150 градусов Цельсия. Горелочное устройство различается на «двух сопловое» и «трех сопловое» (то есть с двумя и тремя соплами для пламени). Поверх змеевиков располагаются два кожуха. Все оборудование размещено на платформе, которая прикреплена к раме автомобиля. Агрегат АДПМ устанавливается на следующие шасси: УРАЛ-43203, УРАЛ-5557. Привод механизмов агрегата осуществляется от тягового двигателя автомобиля, через коробку отбора мощности. Наличие вспомогательных трубопроводов дает возможность быстро подключить агрегат к скважине и емкости с нефтью. Агрегат АДПМ легко запускается в работу, нефть нагревается до установленной температуры за 15-20 минут с момента пуска. АДПМ прост по конструкции, имеет хороший доступ к оборудованию и механизмам, единый пульт управления, удобен в эксплуатации. Принцип работы: Через всасывающий рукав, подключенный к автоцистерне или промысловой емкости, нефть забирается плунжерным насосом высокого давления агрегата АДПМ и прокачивается до необходимой температуры. Нагретая нефть через вспомогательные трубопроводы нагнетается в скважину, где расплавляет имеющиеся отложения парафина. Управление и контроль, за работой агрегата АДПМ осуществляется из кабины водителя. ППУА 1600/100М на шасси Урал Имеет возможность работы в двух режимах. При I режиме работы установка вырабатывает насыщенный пар высокого давления до 10 МПа, при работе во II режиме давление пара не превышает 0,6 МПа.Данные режимы работы используются в зависимости от области применения данного агрегата. При эксплуатации на нефтяных скважинах для удаления отложений парафина (депарафинизация), применим I режим, так как необходимо более высокое давление. II режим применяется для мойки и очистки нефтяного и различного рода оборудования, размораживание верхних слоев почвы в зимнее время года для проведения земляных работ. Обозначение 1600/100 указывает на то, что агрегат вырабатывает 1600 килограмм в час, давлением 100 атмосфер. Установка выпускается в следующих модификациях: А 1000/5; ППУА 1000/12; ППУА 1600/100; ППУА 1800/100 и ППУА 2000/100. обработка пара осуществляется за счет парового котла. Внутри котла находятся «змеевики» горизонтально крученая труба (в виде спирали). По змеевикам циркулирует вода. Змеевики делятся на «внутренние», «наружные» и «потолочные». В центре змеевиков располагается «горелочное устройство» с помощью которого и происходит нагрев воды до состояния пара, температурой 310 градусов Цельсия. Горелочное устройство различается на «двухсопловое» и «трехсопловое» (то есть с двумя и тремя отверстиями для пламени). Также в установку входят: емкость для воды, емкость для топлива, водяной насос, приборы контроля и измерения. Работа установки осуществляется при помощи дистанционной связи, которая имеется в кабине водителя и представляет собой щиток приборов, за счет которых можно не только следить, но и контролировать процесс работы всей установки в целом. По желанию устанавливается наиболее современный дистанционный сигнализатор ДС-Б-070. Все оборудование размещается на монтажной раме, прикрепленной к лонжеронам автомобиля, накрыто кунгом. Данный агрегат выпускается как в стационарном виде с использованием электрического привода, так и на шасси: Камаз, Урал, Краз, приводом в которых является двигатель автомобиля через трансмиссию. - Производительность по пару 1600 кг/час. Рабочее давление от 0,5 до 10 МПа. Максимальная температура пара 310°C Топливо для парового котла дизельное Время работы в автономном режиме при полной заправке цистерны на 3,5 часа. В установке используется хорошо зарекомендовавший себя плунжерный насос ПТ-32, который по сравнению с широко используемыми прочими насосами имеет ряд преимуществ: Более высокая производительность. Работа на малых оборотах, что в свою очередь увеличивает срок службы. Значительно, низкий уровень шума. Возможно исполнение установки (ППУ) ППУА с использованием электропривода, с использованием природного газа в качестве топлива для парового котла. Насос-дозатор плунжерного типа НД Плунжерные дозирующие насосы обычно используют при необходимости создания мощного напора дозируемой среды (до 20-30 МПа и более) или если требуется большой объем дозируемого реагента. Они предназначены для объемного напорного дозирования нейтральных, агрессивных, токсичных и вредных жидкостей, эмульсий и суспензий с высокой кинематической вязкостью (порядка 10-4-10-5 м2/с), с плотностью до 2000 кг/м3. В зависимости от типа насоса (диаметр поршня, характеристика насоса и число ходов поршня) подача может изменяться от нескольких десятых миллилитра до нескольких тысяч литров в час. Принцип действия плунжерных насосов основан на возвратно-поступательном движении одного цельного цилиндра (поршня) внутри другого пустотелого цилиндра (корпуса), в результате чего внутри второго цилиндра создается эффект разрежения / нагнетания. В зависимости от положения полнотелого цилиндра (поршня) в камере насоса (корпусе) создается либо давление разрежения (процесс всасывания), либо создание давления в напорной линии (процесс нагнетания). Процесс регулируется с помощью системы всасывающих и нагнетательных клапанов. Этот насос обеспечивает очень точное дозирование, т.к. и поршень, и рабочая камера, изготовлены из материалов, практически не подверженных каким-либо механическим изменениям в процессе эксплуатации насоса (за исключением процессов коррозии и механического износа движущихся частей). Конструктивная особенность таких насосов-дозаторов - непосредственный контакт перекачиваемой среды не только с материалом рабочей камеры, но и с поршнем. Поэтому при подборе материалов, из которых будет изготовлена рабочая камера и поршень, особое внимание надо обратить не только на химическую совместимость материалов с перекачиваемой среды, но и на содержание в последней абразивных веществ. Наличие абразивов в дозируемой жидкости (особенно микронных размеров) может привести к их накоплению в полости, образующейся между цилиндрическими поверхностями поршня и рабочей камеры, что вызовет дополнительный механический износ, а, в конечном счете, нарушение как точности дозирования (вплоть до «заклинивания» насоса), так и герметичности рабочей камеры. Для защиты поршня от воздействия дозируемых агрессивных реагентов плунжерные насосы оснащаются сильфонами из высоколегированной стали или мембранами из фторопласта, разделяющими проточную часть насоса и приводную камеру с движущимся в ней поршнем (плунжером). насосов чаще всего используется механический тип привода с передачей вращательного момента электродвигателя на возвратно-поступательное движение поршня через различные модификации кривошипно-шатунных механизмов. В таблице 4.8 приведена техническая характеристика насоса дозатора плунжерного типа НД. Таблица 4.8 Техническая характеристика насоса дозатора типа НД
Скребок динамический Предназначен, для очистки насосно-компрессорных труб от парафина и других отложений в фонтанирующих скважинах и скважинах оборудованных электроцентробежными насосами (ЭЦН). Применение: - периодическая очистка насосно-компрессорных труб в добывающих скважинах от парафиновых и других отложений; удаление остатков отложений при других способах очистки скважин. Скребок динамический состоит из скребка нижнего, груза утяжелителя, скребка верхнего и рапсокета. Оптимальное сочетание диаметров скребка уточняется опытным путем. Рапсокет используется для крепления к проволоке d 1,8…2,5 мм, посредством которой устройство присоединяется к лебедке. Скребок крепится на исследовательскую проволоку 8, устанавливается в устройство 4, открывают лубрикаторную задвижку 6, затем буферную 7, производят спуск, затем подъем скребка при помощи исследовательской проволоки и геофизической лебедки. |