Главная страница
Навигация по странице:

  • 2.6 Выбор сварочного тока

  • 2.7 Подбор сварочного пламени.

  • 2.8 Предупреждение деформации

  • сварка. Сварка экономически выгодный, высокопроизводительный и в значительной степени механизированный технологический процесс, широко применяемый практически во всех отраслях машиностроения


    Скачать 402.23 Kb.
    НазваниеСварка экономически выгодный, высокопроизводительный и в значительной степени механизированный технологический процесс, широко применяемый практически во всех отраслях машиностроения
    Анкорсварка
    Дата02.03.2022
    Размер402.23 Kb.
    Формат файлаdocx
    Имя файлаfilippov (2).docx
    ТипДокументы
    #380519
    страница2 из 4

    Основными типами сварных соединений являются сое­динения стыковые, нахлесточные, тавровые, угловые. В свар­ных конструкциях наиболее целесообразны стыковые сое­динения.

    Подготовка кромок стыкового соединения определяется технологическим процессом свар­ки и толщиной соединяемых элементов. В табл. 2 приве­дены примеры подготовки кромок стыковых соединений при дуговой сварке по ГОСТ 5264—80, можно видеть, что обозначения С1, С2 и т. д, соответст­вуют определенному характеру выполнения шва (односто­ронний, двусторонний, на подкладке и т. д.) и форме подготовленных кромок.

    Таблица 2

    Примеры стыковых соединений






    Следует отметить, что зазор между свариваемыми деталями колеблется от 0-5 мм, а общий угол скоса кромок от 70-90о.

    Собранные стыки свариваемых элементов необходимо прихватывать в нескольких местам. Прихватки на месте пересечения швов не допускаются. Прихваточные швы рекомендуется выполнять тем же способом сварки, что и корневой. При прихватке должен применяться тот же присадочный материал, который будет использоваться (или может быть использован) для сварки корневого слоя. Прихватку должен производить сварщик, допущенный к сварке стыков соответствующей марки стали, по возможности тот, который будет сваривать данный стык.

    Прихватки необходимо выполнять с полным проваром и по возможности переваривать при наложении основного шва. К качеству прихваток предъявляются такие же требования, как и к сварному шву.

    Прихваточные швы должны быть равномерно расположены по периметру стыка. Не рекомендуется накладывать прихватки на потолочный участок стыка. В стыках, число прихваток и их протяженность зависят от длины шва и должны располагаться на расстоянии 100-400мм. Протяженность одной прихватки, 20-40мм. Высота прихваток должна быть равна при их выполнении дуговой сваркой в пределах - 3-6 мм. При выполнении прихваток с присадочной проволокой высота прихватки может быть увеличена на 0,5-1 мм.

    2.6 Выбор сварочного тока
    Для дуговойсварки латуни применяют электроды с покрытием ЗТ, разработан­ные Балтийским заводом в Ленинграде. Состав электрода следующий: стержень из кремнемарганцовистой бронзы Бр. КМц 3-1, содержащей 3 % кремния и 1 % марганца; покрытие из 17,5 % марганцовой руды, 13 % плавикового шпата, 16 % серебристого графита, 32 % ферросилиция 75 %-ного, 2,5 % алюминия в порошке. Сварка ведется постоянным током при обратной по­лярности короткой дугой с целью снижения выгорания цинка. От вытекания металла стык защищают прокаленной асбестовой подклад­кой с обратной стороны стыка. При толщине листов до 4 мм сварку ведут без разделки кро­мок. При толщине листов более 4 мм разделка кромок такая же, как и для стали. После сварки шов проковывают, а затем отжигают при 600—650°С для выравнивания химического со­става и придания металлу мелкозернистой струк­туры.

    Сварку латуни можно выполнять угольным электродом на постоянном токе при прямой полярности с применением флюсов.

    При сварке латуни угольным электродом используют флюсы. Наибольшее распростра­нение получил флюс БЛ-3 состава: 35 % криоли­та, 12,5 % хлористого натрия, 50 % хлористого калия, 2,5 % древесного угля.

    Режимы сварки латуни угольным электродом представлены в табл.3.
    Таблица 3

    Режимы сварки латуни угольным электродом
    1   2   3   4

    1

    2

    3

    4

    5

    6

    Бура прокаленная

    52

    30

    25

    -

    50

    40

    Кислота борная

    15

    50

    75

    -

    50

    50

    Магний хлористый

    8

    -

    -

    -

    -

    -

    Натрий хлористый

    25

    10

    -

    -

    -

    -

    Кальций фтористый

    -

    -

    -

    15

    -

    10

    Гашёная известь

    -

    -

    -

    17

    -

    -

    Борный ангидрид

    -

    -

    -

    23

    -

    -

    Натриевое стекло

    -

    -

    -

    45

    -

    -

    Барий углекислый

    -

    10

    -

    -

    -

    -

    Толщина металла,

    мм

    Диаметр угольного

    электрода, мм

    Диаметр присадочного стержня, мм

    Сварочный ток,

    А

    3

    5

    10

    14-16

    6

    10

    18

    20

    4

    6

    8

    10

    180-200

    240-270

    400-450

    450-550


    Латунь толщиной до 10 мм сваривают без подогрева, более 10 мм — с подогревом до 300—350°С.

    При сварка никеля обычно применяется газовая сварка.

    2.7 Подбор сварочного пламени.
    Сварочное пламя образуется при сгорании горючего газа или паров горючей жидкости в кислороде. Пламя нагревает и расплавляет основной и присадочный металл в месте сварки. Наибольшее применение при газовой сварке нашло кислородно-ацетиленовое пламя, так как оно имеет высокую температуру (3150°С) и обеспечивает концентрированный нагрев. Однако в связи с дефицитностью ацетилена в настоящее время получили широкое распространение (особенно при резке металлов) газозаменители ацетилена пропан-бутан, метан, природный и городской газы, водород.

    От состава горючей смеси, т. е. от соотношения кислорода и горючего газа, зависит внешний вид, температура и влияние сварочного пламени на расплавленный металл. Изменяя состав горючей смеси, сварщик тем самым изменяет основные параметры сварочного пламени.

    Для получения нормального пламени отношение кислорода к горючему газу должно быть для ацетилена 1,1—1,2, природного газа 1,5—1,6, пропана — 3,5. Все горючие газы, содержащие углеводороды, образуют сварочное пламя, которое имеет три ярко различимые зоны: ядро, восстановительную зону и факел. Водородное пламя ярко различимых зон не имеет, что затрудняет его регулировку по внешнему виду.

    При зажигании газовой струи, вытекающей из сопла, пламя перемещается по направлению движения струи газовой смеси. Скорость истечения для каждого газа подбирается такой, чтобы пламя не проникало внутрь сопла горелки и не отрывалось от него. Газ в струе должен прогреваться до температуры воспламенения, ацетилен воспламеняется при температуре 450—500°С, а газо-заменители — 550—650°С. Поэтому ядро пламени при сгорании газов-заменителей длиннее, чем при сгорании ацетилена.

    В зависимости от соотношения между кислородом и ацетиленом получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее.

    Нормальное пламя теоретически получают тогда, когда в горелку на один объем кислорода поступает один объем ацетилена. Практически кислорода в горелку подают несколько больше — от 1,1 до 1,3 от объема ацетилена.

    Нормальное пламя характеризуется отсутствием свободного кислорода и углерода в его восстановительной зоне. Кислорода в горелку подается немного больше из-за небольшой его загрязненности и расхода на сгорание водорода. В нормальном пламени ярко выражены все три зоны.













    Ядро имеет резко очерченную форму (близкую к форме цилиндра), плавно закругляющуюся в конце, с ярко светящейся оболочкой. Оболочка состоит из раскаленных частиц углерода, которые сгорают в наружном слое оболочки. Размеры ядра зависят от состава горючей смеси, ее расхода и скорости истечения. Диаметр канала мундштука горелки определяет диаметр ядра пламени, а скорость истечения газовой смеси — его длину.

    Площадь поперечного сечения канала мундштука горелки прямо пропорциональна толщине свариваемого металла. Сварочное пламя не должно быть слишком «мягким» или «жестким». Мягкое пламя склонно к обратным ударам и хлопкам, жесткое — способно выдувать расплавленный металл из сварочной ванны. При увеличении давления кислорода скорость истечения горючей смеси увеличивается и ядро сварочного пламени удлиняется, при уменьшении скорости истечения — ядро укорачивается. С увеличением номера мундштука размеры ядра увеличиваются. Температура ядра достигает 1000°С.

    Окислительное пламя применяют при сварке с целью повышения производительности процесса, но при этом обязательно пользоваться проволокой, содержащей повышенное количество марганца и кремния в качестве раскислителей.

    Пламя с избытком ацетилена применяют при наплавке твердыми сплавами. Пламя с незначительным избытком ацетилена используют для сварки алюминиевых и магниевых сплавов.

    Газовой сваркой никель сваривается удовлетворительно. Пламя не должно иметь избытка кислорода, который вызывает появление пор, а наплавленный металл получается хрупким. Допустимо применять пламя с небольшим избытком ацетилена. При сварке никеля мощность пламени берут 140-200 дм /ч аце­тилена, а при сварке монельметалла* - 100 дм /ч на 1 мм толщины металла. В качестве присадки применяют полоску из основного металла или проволоку такого же состава. Диаметр проволоки должен быть равен половине толщины свариваемого листа. Хо­рошие результаты даёт никелевая проволока, содержащая до 2% марганца и не более 0,2% кремния. Предел прочности сварного соединения 26-28 кгс/мм , угол загиба до 90.

    Сварка нихрома (75-80% никель, 15-18% хрома, до 1,2-1,4% марганца), имею­щего температуру плавления 1390С и малую теплопроводность, затрудняется образо­ванием тугоплавкой плёнки окиси хрома, которую удаляют механическим путём. Сварку следует вести с максимальной скоростью и без перерывов. Повторная и много­слойная сварка вызывает трещины, рост зерна и межкристаллитную коррозию металла шва.

    Пламя должно иметь некоторый избыток ацетилена. Мощность пламени 50-70 дм /ч ацетилена на 1 мм толщины металла. Применяют флюс-пасту состава (%): буры 40; борной кислоты 50; хлористого натрия или фтористого калия 10; флюс разводят на воде. В качестве присадочного прутка применяют полоску из свариваемого металла шириной 3-4 мм или проволоку из нихрома ЭХН-80. После отжига сварное соедине­ние имеет предел прочности 35-45 кгс/мм .

    Газоваясварка латуней обеспечи­вает лучшее качество сварных соединений, чем дуговая покрытыми электродами. Для уменьшения испарения цинка сварку латуни ведут окислительным пламенем; при этом на поверх­ности сварочной ванны образуется жидкая пленка окиси цинка, препятствующая его испа­рению. Избыточный кислород окисляет часть водорода пламени и поглощение жидким ме­таллом водорода уменьшается.

    Газовую сварку широко используют для сварки латуни, которая труднее поддается сварке электрической дугой. Основное затруднение при сварке состоит в значительном испарении из латуни цинка, которое начинается при 900С. Если латунь перегреть, то вследствие испарения цинка, шов получится пористым. При газовой сварке может испаряется до 25% содержащегося в латуни цинка.

    Для уменьшения испарения цинка сварку латуни ведут пламени с избытком кислорода до 30-40%.

    Для удаления окислов меди и цинка при газовой сварке пользуются флюсами того же состава, что и при дуговой сварке меди угольным электродом.

    Для уменьшения испарения цинка и погло­щения сварочной ванной водорода конец ядра пламени должен находиться от свариваемого металла на расстоянии в 2—3 раза большем, чем при сварке стали.

    Для газовой сварки латуней ВНИИавтогенмаш разработал присадочную проволоку марки ЛК 62-0,5 (ГОСТ 16130—72), содержащую 60,5— 63,5 % меди, 0,3—0,7 % кремния, остальное — цинк. В качестве флюса при сварке этой приса­дочной проволокой применяют прокаленную буру.

    ВНИИавтогенмаш для сварки латуней раз­работал самофлюсующую присадочную про­волоку ЛКБ062-02-004-05 (ГОСТ 16130—72), содержащую 60,5—63,5'/, меди, 0,1—0,3 % крем­ния, 0,03—0,1 % бора, 0,3—0,7 % олова, осталь­ное — цинк. Бор, входящий в состав проволоки, выполняет функции флюса. Применение дру­гого флюса при сварке этой проволокой не тре­буется.






    2.8 Предупреждение деформации
    Деформацией называется изменение формы и размеров изделия под действием внутренних и внешних сил. Деформации могут быть упругими и пластическими.

    Они подразделяются на деформации растяжения, сжатия, кручения, изгиба, среза. Деформации при сварке возникают при неравномерном нагреве и охлаждении металла. Уменьшение деформаций производят конструктивным и технологическим способом.

    Конструктивным – уменьшение количества сварных швов и их сечений, что снижает количество вводимой теплоты. Между количеством теплоты и деформацией существует прямая зависимость.

    Технологический способ – применение силовой обработки металла сварочного изделия в процессе его сварки.

    Виды применяемых сил:

    • Внешняя статическая или пульсирующая сила, приложенная к собранному под сварку изделию.

    • Местная проковка и обкатывание металла шва, околошовного металла.

    Деформации выражаются в изменении формы и размеров детали по сравнению с намеченными до резки.

    Контроль качества сварки

    В производстве сварных изделий различают дефекты: наружные, внутренние и сквозные, исправимые и неисправимые, внутрицеховые и внешние.

    • наружные дефекты: трещины, микротрещины, осадочные раковины, утяжины, вогнутости корня, несквозные свищи, пары, брызги металла и.т. д.

    • внутренние дефекты: непровар, внутренняя пора и.т. д.

    • сквозные дефекты: свищи, прожоги, трещины, сплошные непровары.

    • исправимые дефекты – дефекты, устранение которых технически возможны и экономически целесообразно и т.д.

    Основные виды контроля классифицируются по форме воздействия на производство, активный и пассивный. По охвату продукции на сплошной и выборочный. По месту проведения на стационарный и подвижной.

    Различают следующие виды контроля за качеством сварки:

    Внешний осмотр – служит для определения наружных дефектов в сварных швах и производится невооруженным глазом или с помощью лупы, увеличивающий в 5–10 раз.

    Испытание керосином – применяется для определения плотности сварных швов. Доступную для осмотра сторону шва покрывают водной суспензией мела или каолина и подсушивают. Другую сторону смазывают керосином. Появление жирного пятна на меле выявляет место дефекта.

    Испытание обдувом воздуха – состоит в том, что одна сторона обдувается сжатым воздухом, а другая покрывается водным раствором с мылом. Появление пузырей показывает место дефекта шва.

    Испытание вакуумом – определенный участок шва покрывают мыльным раствором и устанавливают вакуумную камеру, появление пузырей или пены показывает место дефекта шва.

    Испытание водой – под давлением одну сторону шва обливают водой, если с другой стороны появляются течи, капли, это значит, что шов с дефектом.

    Также проводятся испытания воздушным давлением, гидравлическим давлением, просвечиванием сварных соединений, ультразвуком, магнитографическим методом, технологические, химические и механические испытания.










    1   2   3   4


    написать администратору сайта