Технологические процессы. Технологические процессы мдк 01. 01. Кип
Скачать 2.23 Mb.
|
Технологические процессыМДК 01.01.КИПВыбор технологического оборудования и промышленных роботов для автоматизированного производства Выбор технических средств для АП — один из важнейших этапов, определяющих структурнокомпоновочные решения, организационные и технологические возможности, эксплуатационные расходы и другие показатели производства. Исходной информацией для выбора оборудования и промышленных роботов являются сведения об изготовляемых деталях и организационно-технологических условиях их изготовления. Подбор и группирование деталей для изготовления на автоматизированном участке производится с учетом следующих характеристик:
На основе подобранной группы деталей с учетом видов обработки и трудоемкости проводится выбор типа требуемого оборудования, приспособлений, промышленных роботов, характера и маршрута транспортирования деталей. На этом этапе определяется компоновка автоматизированного производственного участка, проводится расчет вместимости автоматизированного склада, числа спутников, оптимизация пространственного расположения оборудования. Для определения состава оборудования, включаемого в автоматизированные переналаживаемые системы, необходима показательная проработка ТП всех деталей, обрабатываемых в системе. В первую очередь, разрабатывают ТП на деталь, имеющую наибольшее число обрабатываемых поверхностей; при этом намечают первоначальную специализацию оборудования и выявляют необходимые технологические характеристики для оборудования с ЧПУ. Технологические процессы для остальных деталей группы строят в соответствии с принятым типовым маршрутом и с учетом намеченной специализации оборудования. Выбор основного технологического оборудования Анализ многообразия деталей, подлежащих автоматизированной обработке, и известных автоматизированных участков показывает, что можно выделить два основных типа производственных участков, отличающихся оборудованием, средствами автоматического транспортирования, структурно-компоновочными решениями: автоматизированные участки для изготовления деталей типа тел вращения (например, валов) и корпусных деталей. Технологически маршрут изготовления деталей типа тел вращения обычно состоит из предварительной или окончательной токарной обработки, сверлильно-фрезерных операций, термообработки и шлифования. Для автоматизированного изготовления таких деталей неприемлем способ закрепления их в приспособлениях-спутниках. Это связано с тем, что детали типа тел вращения при обработке закрепляются в патронах и получают вращение вокруг оси. Поэтому основной путь автоматизации процесса изготовления деталей типа тел вращения — использование станков с ЧПУ и ПР. Заготовки располагаются на призмах или в пазах в накопителях без жесткого закрепления. Выбор промышленных роботов для обслуживания технологического оборудования. Промышленные роботы чаще всего применяют для автоматизации загрузки-выгрузки изделий на технологическое оборудование, они могут выполнять также смену инструмента и контроль изделий на оборудовании. Применение ПР выравнивает и стабилизирует работу оборудования, увеличивает загрузку оборудования, обеспечивает гибкость (быструю переналадку) при смене изделия, улучшает условия труда в автоматизированном производстве. При этом ПР должны иметь: •достаточный технический уровень для обслуживания сложного технологического оборудования; •соответствующие технические характеристики (грузоподъемность, скорость срабатывания, точность позиционирования, тип программного устройства); •стыкуемость с обслуживаемым оборудованием по всем параметрам; •высокую надежность, достаточную универсальность, малое время переналадки; •возможность повышения технико-экономических показателей обработки (низкий уровень брака, высокая производительность). При выборе ПР необходимо учитывать: •соответствие массы манипулируемого объекта грузоподъемности ПР; •соответствие зоны, в которой должно проводиться манипулирование, рабочей зоне робота; •соответствие траектории, скорости и точности движений кинематическим и точностным возможностям ПР; •возможность захватывания детали захватным устройством; •построения траектории перемещения схвата робота между заданными точками в рабочей зоне. Для автоматизированного участка целесообразно использовать группу однотипных ПР, так как упрощается их обслуживание и наладка. Классификация гидравлических машин, их основные параметры К гидравлическим машинам относится обширный круг машин, механизмов и устройств, предназначенных для создания или использования потока жидкой среды как носителя энергии, главным образом, это насосы, гидродвигатели и гидропреобразователи. Однако часто в это понятие включают и гидропередачи (гидроприводы). Последние являются совокупностью насосов и гидродвигателей, соединенных между собой определенным образом в рамках единой системы, служащей для передачи и преобразования энергии с помощью жидкой среды. Все гидромашины — насосы, гидродвигатели, а также гидропередачи — по принципу действия делят на два вида: динамические и объемные. Современные направления развития гидромашин: - Увеличение производительности и снижение затрат. -Совершенствование уплотнений (торцевые, газовые, газодинамические) – увеличение КПД. -Создание систем мониторинга – системы контроля температуры и вибрации и других параметров Насос — как динамический, так и объемный — представляет собой машину для создания потока жидкой среды. В динамическом насосе жидкая среда перемещается под силовым воздействием на нее в камере, постоянно сообщающейся с входом и выходом насоса. Для объемного насоса характерным является то, что жидкая среда в нем перемещается путем периодического изменения объема занимаемой ею камеры, попеременно сообщающейся с входом и выходом насоса. Гидродвигатель служит для преобразования энергии, обратного тому, которое имеет место в насосах, т. е. для преобразования энергии потока жидкой среды в энергию выходного звена. Динамические гидродвигатели представлены в технике различного рода гидротурбинами, а объемные — гидроцилиндрами, поворотными гидродвигателями и гидромоторами. Гидроцилиндр, как известно, это объемный гидродвигатель с возвратно-поступательным движением выходного звена — штока или плунжера. Поворотный гидродвигатель представляет собой объемную гидромашину с ограниченным поворотным движением выходного звена — вала. Гидротурбина и гидромотор — это гидродвигатели с неограниченным вращательным движением выходного звена, т.е. вала. Для рабочего процесса динамических гидромашин характерными являются большие скорости движения их рабочих органов (а, значит, и жидкой среды). В то же время в объемных гидромашинах большие скорости рабочих органов (и жидкой среды) не обязательны, так как главную роль в их рабочем процессе играет давление жидкой среды. Классификация гидромашин Центробежные насосы – одни из наиболее распространенных машин промышленности. По количеству они уступают только электрическим двигателям. Т.к. электрические двигатели используются для приведения в действие насосов, то, можно сказать, что львиная доля электроэнергии мира расходуется на транспортировку жидкости центробежными насосами. Центробежные насосы получили своё название от способа, в котором жидкость передаётся энергии. Когда жидкость подводится к насосу, она соприкасается с вращающимся колесом и выталкивается в напорный патрубок с центробежной силой через полость специальной формы, называемой спиральным кожухом. Жидкость входит в насос по центру колеса через всасывающее отверстие. Трение между частицами жидкости и рабочим колесом заставляет жидкость вращаться. Например, как трение между дорогой и резиной шины заставляет машину двигаться. Рабочее колесо тянет частички жидкости, поэтому они вращаются при контакте с ними. Жидкость выталкивается наружу колеса с помощью центробежной силы – явление, которое выталкивает прочь любой объект из центра круга к его границам. Вот так жидкость получает кинетическую энергию от колеса. Поэтому эти насосы называются центробежными. Количество энергии, передаваемое жидкости зависит от трех факторов: плотности жидкости: частоты вращения рабочего колеса: диаметра рабочего колеса: После рабочего колеса жидкость попадает в полость спирального корпуса, откуда попадает в напорный патрубок. Функционирование основано на следующих процессах: -Через впускной фланец воздух всасывается вовнутрь изделия; -Затем поршень начинает движение, а клапан перекрывает входное отверстие; -Начинается сжатие рабочего потока; -При достижении заданного давления открывается выпускной клапан; -Сжатый газ устремляется в магистраль или ко второй ступени, что зависит от конструкции насоса; -Вторая ступень работает аналогично, она дожимает поток до нужного давления; -Открывается выпускной клапан на корпусе второго цилиндра и сжатый поток поступает в глушитель, а затем в магистраль или ресивер. Принцип действия вакуумного поршневого насоса Поршневой компрессор: устройство, характеристики, принцип работы Поршневой компрессор — это устройство, предназначенное для повышения давления (сжатия) и перемещения газообразных веществ. Назначение поршневого компрессора заключается в подаче сжатого воздуха или газа под избыточным давлением, более 0,2 – 0,3 МПа. Электрические поршневые компрессоры, воздействующие с помощью поршня на определенный замкнутый объем воздуха в цилиндре в период нагнетания, могут создавать значительную степень сжатия при относительно ограниченной подаче воздуха или газа. Поршневой компрессор обладает высоким коэффициентом полезного действия и его применение наиболее целесообразно при давлении более 1 МПа и при малой подаче. Компрессор поршневой центробежный конструктивно и по принципу действия похож на многоступенчатый центробежный насос. Отличие заключается в том, что рабочим телом является сжимаемый газ. Работа поршневого компрессора Работа поршневого компрессора Принцип работы поршневого компрессора похож на действие поршневого насоса. Отличием является то, что поршень насоса выталкивает жидкость в течение всего нагнетательного хода, а компрессор поршневой выталкивает воздух или газ лишь после того, как давление в цилиндре превысит давление в нагнетательной линии. Принцип действия поршневого компрессора основан на совместной работе:
Всё начинается с того, что привод поршневого компрессора приводит в движение коленчатый вал. Работа поршневого компрессора состоит в подаче сжатого воздуха или газа под избыточным давлением и происходит это следующим образом. При движении поршня вправо из крайнего левого положения всасывающий клапан k1 открыт и воздух всасывается в цилиндр. Давление на протяжении всего хода всасывания постоянно и равно атмосферному. При ходе поршня из крайнего правого положения влево всасывающий клапан k1 закрывается и газ, замкнутый в левой полости цилиндра сжимается. При достижении давления p2, равного давлению газа в нагнетательном сборнике, открывается нагнетательный клапан m1, и газ будет выталкиваться из цилиндра при постоянном давлении p2. По окончании нагнетания, если принять полное опорожнение цилиндра от газа, начнется снова всасывание. При этом должно произойти мгновенное падение давления. https://www.nektonnasos.ru/article/kompressory/porshnevoy-kompressor/ |