Главная страница
Навигация по странице:

  • Гидрогенизация.

  • Переэтерификация.

  • Бета-каротин.

  • Энокраситель

  • Сахарный колер

  • Крахмал и модифицированный крахмал.

  • Пектиновые вещества

  • Полисахариды, выделенные из морских водорослей

  • Технология молока и молочных продуктов


    Скачать 3.66 Mb.
    НазваниеТехнология молока и молочных продуктов
    АнкорТехнология молока и молочных продуктов.doc
    Дата28.01.2017
    Размер3.66 Mb.
    Формат файлаdoc
    Имя файлаТехнология молока и молочных продуктов.doc
    ТипУчебник
    #380
    страница10 из 49
    1   ...   6   7   8   9   10   11   12   13   ...   49

    Глава 2. РАСТИТЕЛЬНЫЕ ЖИРЫ И АНАЛОГИ МОЛОЧНОГО ЖИРА

    ХАРАКТЕРИСТИКА РАСТИТЕЛЬНЫХ ЖИРОВ


    С целью снижения ресурсоемкости производства молочных продуктов для замены молочного жира (или части его) используют жиры растительного происхождения.

    Растительные жиры, предназначенные для использования в технологии молочных продуктов, как правило, применяют в виде аналогов (заменителей) молочного жира, которые получают путем специальной обработки (рафинации, гидрогенизации, переэтерификации) растительных жиров. Цель обработки – получить твердые жиры пластичной консистенции путем изменения жирнокислотного состава исходных растительных жиров (саломасы).

    Рассмотрим особенности жирнокислотного состава молочного жира и растительных жиров.

    Молочный жир состоит из нескольких тысяч триглицеридов. В триглицеридах молочного жира обнаружено свыше 150 жирных кислот с числом углерода от C4 до C26, в том числе только основных 10–12 кислот. В табл. приведен состав, свойства и массовая доля основных жирных кислот, содержащихся в молочном жире.

    Жирные кислоты влияют на физические свойства жира. Так, преобладание в триглицеридах молочного жира твердых насыщенных жирных кислот C10–C18 (их содержится более 60 %) над жидкими ненасыщенными (35 %) и низкомолекулярными кислотами C4–C8 (3–5 %) обусловливает температуру застывания молочного жира 18–23 С, а сложный триглицеридный состав – несоответствие температуры застывания температуре плавления, которая составляет 28–36 С.
    Характеристика основных жирных кислот молочного жира

    Жирные кислоты

    Число атомов углерода и принятые обозначения *

    Температура плавления, С

    Массовая доля в

    молочном жире, %

    кислоты

    группы кислот

    Насыщенные










    65

    Масляная

    С 4 : 0

    - 7,9

    2,5 – 5,0

    Капроновая

    C 6 : 0

    - 3,4

    1,0 – 3,5

    Каприловая

    C 8 : 0

    16,7

    0,4 – 1,7

    Каприновая

    С10 : 0

    31,6

    0,8 – 3,6

    Лауриновая

    C12 : 0

    44,2

    0,8 – 3,9

    Миристиновая

    C14 : 0

    53,9

    7,6 – 13,2

    Пальмитиновая

    C16 : 0

    62,9

    20,0 – 36,0

    Стеариновая

    C18 : 0

    69,9

    5,5 –13,7

    Ненасыщенные










    35

    Олеиновая

    C 18 : 1

    13,4

    16,7 – 37,6

    Линолевая

    C 18 : 2

    - 5,0

    1,0 – 5,2

    Линоленовая

    C 18 : 3

    - 11,0

    0,1 – 2,1


    * Первая цифра внизу индекса С означает число атомов углерода, а после двоеточия – число ненасыщенных связей в молекуле жирной кислоты.
    Температура плавления молочного жира близка к температуре тела, что способствует хорошему усвоению молочного жира. По разнообразию жирных кислот молочный жир не имеет себе равных в природе (среди животных и растительных жиров).

    Растительные жиры (масла) делятся на жидкие: подсолнечное, хлопковое, кукурузное, соевое, рапсовое, – и твердые: кокосовое, пальмовое, пальмоядровое.

    В табл. приводятся некоторые показатели состава и свойства растительных жиров в сравнении с молочным жиром.

    Особенностью состава триглицеридов растительных жиров является незначительное содержание различных видов жирных кислот, преимущественно ненасыщенных, в том числе основных 12, в отличие от молочного жира – 1012.

    Так, в подсолнечном и кукурузном масле преобладают линолевая и олеиновая, – в подсолнечном до 90 % и более, в кукурузном 88 %. Отличительной особенностью кукурузного масла является наличие значительного количества токоферолов – более 0,2 %, которые являются природными антиоксидантами.


    Характеристика состава и свойств растительных масел и молочного жира

    Жиры и масла

    Массовая доля и состав жирных кислот, %

    Характеристика

    Насыщенных

    Ненасыщенных

    Температура застывания, С

    Йодное число

    Молочный жир

    65

    35

    18 – 23

    28 – 45

    Растительные масла и жиры













    Подсолнечное

    10 – 12

    до 90

    (– 19)  (– 16)

    119 – 136

    Кукурузное

    12

    88

    (– 20)  (– 10)

    111 – 133

    Соевое

    14 – 20

    75 – 86

    (– 18)  (– 15)

    120 – 140

    Рапсовое

    8

    92

    (– 10)  0

    91 – 106

    Пальмовое

    44 – 57

    43 – 56

    40  41

    48 – 58

    Кокосовое

    до 90

    10

    23  26

    7 – 11

    Пальмоядровое

    79 – 83

    17 – 21

    19  24

    12 – 20


    В соевом масле массовая доля ненасыщенных жирных кислот составляет 78–86 %, в том числе линолевой 43–56 %, олеиновой 15–36 %, линоленовой 2–14 %, и насыщенных жирных кислот – 14–20 %, в том числе пальмитиновой 2,4–14 %, стеариновой 2–7,5 %.

    В рапсовом масле преобладает эруковая кислота.

    Пальмовое масло получают из мякоти плодов пальмы. В пальмовом масле основную долю жирных кислот составляют пальмитиновая и олеиновая кислоты – до 90 % и выше, лауриновая и миристиновая – не более 2 %. Глицеридный состав пальмового масла отличается от состава других масел наличием симметричных динасыщенных и диненасыщенных глицеридов, массовая доля которых составляет до 35 %. Для выделения симметричных глицеридов масло фракционируют: отделяют среднюю фракцию, имеющую важное значение при производстве заменителей масла какао, и другие фракции; нефракционированное масло используют в производстве масложировой продукции. Так, смесь растительных масел, в состав которой входит и пальмовое масло, предлагается как заменитель молочного жира в технологии комбинированного масла.

    Кокосовое масло вырабатывают из высушенной мякоти плодов кокосовой пальмы (копры). Кокосовое масло характеризуется высоким содержанием насыщенных жирных кислот – лауриновой и миристиновой – до 90 %, что определяет его твердую консистенцию, а также наличием низкомолекулярных летучих жирных кислот с числом атомов углерода 10 и ниже. В настоящее время кокосовое масло начали использовать в технологии молочных продуктов в качестве заменителя какао-порошка при получении глазури для глазированных сырков и мороженого; как заменитель молочного жира при производстве мороженого, сгущенного и сухого молока, некоторых низкожирных сыров – сулугуни, адыгейского и в небольших количествах – в плавленых сырах.

    Пальмоядровое масло добывают из ядра плода масличной пальмы в отличие от пальмового масла, получаемого из мякоти плода. По своей характеристике пальмоядровое масло близко к маслу кокосовому. Триглицериды пальмоядрового масла содержат большое количество лауриновой кислоты. Как и пальмовое масло, это масло фракционируют на жидкую и твердую фракции. Последнюю (стеариновую) используют как заменитель твердых жиров при производстве масложировой продукции.

    ТЕХНОЛОГИЯ ПИЩЕВЫХ РАСТИТЕЛЬНЫХ ЖИРОВ


    Рафинация. Природное масло и жиры представляют собой многокомпонентную систему, в которую помимо триглицеридов входят различные сопутствующие вещества, растворимые в триглицеридах: фосфолипиды, свободные жирные кислоты, пигменты, воскоподобные вещества. Количество сопутствующих веществ невелико, но они определяют товарное качество масел и жиров, а также влияют на их технологические свойства. Для повышения пищевого достоинства и технологических свойств масла и жиры подвергают очистке – рафинации.

    Рафинация представляет собой ряд последовательно осуществляемых операций: гидратация, нейтрализация, адсорбционная рафинация (отбеливание), дезодорация и вымораживание (винтеризация).

    Назначение гидратации – максимально извлечь из масел фосфолипиды и другие гидрофильные вещества. Процесс гидратации растительных масел предусматривает введение в них гидратирующего агента, чаще всего воды, при температуре 45–60 С, разбавленных водных растворов солей, кислот, щелочей и др.

    Назначение нейтрализации, или щелочной рафинации, – максимально извлечь свободные жирные кислоты. После осуществления процесса нейтрализации получают рафинированное масло и отходы – мыльные растворы (соапстоки).

    Назначение адсорбционной рафинации – отбеливания является извлечение из масел окрашивающих веществ – пигментов, а также остатков мыла после щелочной рафинации. Для освобождения от остатков мыла масло промывают горячей водой, либо обрабатывают раствором лимонной или фосфорной кислот. Так как рафинированное масло и саломасы, приготовленные на их основе, должны быть светлыми, то возникает необходимость очистки их от пигментов, например каратиноидов. С этой целью пигменты сорбируют на поверхности твердых адсорбентов, в качестве последних используют специальные активные отбеливающие глины, полученные из алюмосиликатов, реже активные угли и др.

    Назначение дезодорации – удаление из масел и жиров веществ, определяющих вкус и запах. Дезодорацию осуществляют методом перегонки с водяным паром (дистилляцией). Получают рафинированное, дезодорированное масло (жир) и отходы — продукты отгонки (погоны).

    Назначение вымораживания (винтеризации) — удаление из рафинированных, дезодорированных масел воскоподобных веществ. Получают рафинированное, дезодорированное масло и отходы – восковые вещества (осадки).

    Для получения заменителей жира, в частности аналога молочного жира, рафинированные растительные жиры модифицируют.

    Модификация жиров – это изменение их первоначальных свойств путем изменения жирнокислотного и глицеридного состава, что достигается гидрогенизацией и переэтерификацией жиров.

    Гидрогенизация. Гидрогенизацию масел и жиров молекулярным водородом проводят при температуре 180–240 С в присутствии никелевых и медно-никелевых катализаторов как правило, при давлении, близком к атмосферному. Задача гидрогенизации масел и жиров – целенаправленное изменение жирнокислотного состава триглицеридов исходного жира в результате частичного или полного присоединения водорода к остаткам ненасыщенных жирных кислот, входящих в состав триглицеридов растительного жира.

    Основная реакция, протекающая при гидрогенизации – присоединение водорода к двойным связям непредельных жирных кислот. Подбирая соответствующие условия реакции, удается осуществить этот процесс избирательно, гидрируя сначала в основном остатки линоленовой кислоты до линолевой, затем линолевой до олеиновой, а уже потом остатки олеиновой до стеариновой кислоты, получить продукт с заранее заданными свойствами, называемый саломасом.

    +H2 +H2 +H2

    С 18 : 3 С 18 : 2 С 18 : 1 С 18 : 0

    Линоленовая Линолевая Олеиновая Стеариновая

    кислота кислота кислота кислота
    Параллельно с присоединением водорода к двойным связям (гидрирование) происходит структурная (смещение С=С связи) и геометрическая (изменение пространственного расположения –H и –CH2 групп С=С связи) изомеризация, что приводит к накоплению в саломасе триглицеридов, содержащих трансизомеры жирных кислот. Гидрогенизированные жиры содержат до 30 % и более трансизомеров жирных кислот, в то время как в сливочном коровьем масле массовая доля их ин превышает 8 %.

    Как показали результаты фундаментальных исследований, увеличение содержания трансизомеров жирных кислот в пище способствует развитию онкологической патологии, сахарного диабета, ожирения, атеросклероза, нарушению репродуктивной функции и некоторых других не менее серьезных болезней.

    К сожалению, в настоящее время гидрогенизированные жиры нашли широкое применение вследствие своей относительной дешевизны.

    Переэтерификация. Переэтерификацией называют перераспределение остатков жирных кислот в триглицеридах жира. При внутримолекулярной переэтерификации изменяется взаимное положение жирных кислот в триглицериде. При межмолекулярной переэтерификации происходит обмен жирных кислот между триглицеридами. В результате внутри - и межмолекулярной переэтерификации расплавленного (жидкого) жира и смеси жиров достигается статистическое распределение жирных кислот в смеси триглицеридов. Переэтерификацию проводят при температуре 80–90 С в присутствии катализаторов, из них наиболее распространенными являются метилат натрия, этилат натрия и гидроксид натрия в смеси с глицерином.

    Переэтерификация не вызывает структурного трансформирования жирных кислот и образования трансизомеров.

    Переэтерификации подвергают главным образом смеси высокоплавких жиров (пальмовое, кокосовое масла) с жидкими растительными маслами. Путем переэтерификации можно получить пластичные смеси с заданными свойствами. Так, при получении аналогов молочного жира температура плавления переэтерифицированных жиров должна соответствовать температуре плавления молочного жира.

    Единственным аналогом молочного жира этой группы, представленным сейчас на российском рынке, является “Акобленд Супер”, производства шведской компании “Карлсхамнс”.

    Некоторые виды растительных жиров и аналогов молочного жира предназначенных для частичной или полной замены молочного жира в таких молочных продуктах, как масло, сыр, плавленый сыр, сгущенное молоко, мороженое, глазури для творожных сырков и мороженого, приведены ниже.


    Молочная продукция

    Растительные масла “Союз”

    Аналоги молочного жира “Союз”

    Пальмовое

    Кокосовое

    Соевое рафии-нированное

    “Союз – 2”

    “Союз – 4”

    “Союз – 5/2”

    “Союз – 5/3”

    “Союз – 7”

    “Союз – 7/1”

    Гидрогени-зированное

    Дезодори-рованное

    Комбинированные масла

    +



    +

    +

    +

    +

    +

    +

    +



    Сметана



    +



    +



    +

    +

    +



    +

    Сыры

    +



    +

    +

    +

    +

    +

    +





    Сыры плавленые

    +



    +



    +

    +

    +

    +

    +

    +

    Сгущенное молоко

    +

    +

    +

    +



    +







    +

    Глазури для творожных сырков

    +

    +







    +







    +

    Мороженое



    +







    +





    +

    +

    Глазурь для мороженого



    +















    +


    Аналоги молочного жира создаются на основе растительных жиров и по органолептическим, физико-химическим и структурно-механическим свойствам приближены к молочному жиру.

    Температура плавления аналогов молочного жира приближена к температуре плавления молочного жира. В состав жировых смесей входит бета-каротин, ароматизатор сливочного вкуса, лецитин (эмульгатор), а также натуральный молочный жир. Так, в состав “Союз – 5/2”, рекомендованного для производства комбинированного масла, входит смесь фракционированных растительных масел и жиров, эмульгатор (лецитин), бета-каротин и ароматизатор сливочного вкуса (или без ароматизатора).

    В настоящее время аналог молочного жира “Союз – 5/2” усовершенствован и поставляется с маркировкой “Люкс” (“Союз – 5/2 Л”). Он обладает улучшенными органолептическими показателями, не содержит трансизомеров жирных кислот, кривая плавления максимально приближена к кривой плавления молочного жира. “Союз – 5/2Л” содержит в своем составе мягкий ароматизатор и новый эмульгатор, позволяющий достичь однородной консистенции продукта.

    В состав глазури для творожных сырков входят какао-порошок, сахар, растительный жир, лецитин, ароматизатор (ванильная эссенция).

    В состав жировой смеси для сметаны включены стабилизаторы (эмульгаторы) растительного происхождения, являющиеся полимерными соединениями полисахаридов.

    Специалисты научно-исследовательского центра Нижегородского масложирового комбината разработали рецептуру растительного жира-аналога молочного жира, выпускаемого под маркой “МАРГО”. Продукт “МАРГО” по основным показателям максимально приближен к молочному жирую В состав “МАРГО” входят пищевые гидрогенизированные или переэтефицированные жиры, растительные жиры и масла, эмульгаторы, ароматизаторы, красители и другие пищевые добавки. Продукт может выпускаться без ароматизаторов и (или) красителей. Массовая доля жира в “МАРГО” не менее 99,7 %, содержание твердых жиров при температуре 10 С составляет 49–52 %, при 15 С – (35–37) %, при 20 С – (19–21) %, при 30 С – (1–3) %.

    “МАРГО” применяют при производстве комбинированного масла, сметаны, плавленых сыров и сгущенного молока. При производстве масла с применением “МАРГО” не обязательно использование гомогенизатора и дезодоратора.

    При выработке комбинированного масла с использованием аналогов молочного жира необходимо дифференцировать их свойства с учетом степени отвердевания глицеридов в жирах в зависимости от температуры охлаждения, которая должна быть максимально приближена к сезонным изменениям молочного жира. Степень отвердевания глицеридов в отвержденных растительных жирах в сравнении с молочным жиром приведена в табл.
    Степень отвердевания глицеридов в различных жирах в зависимости от температуры.

    Наименование жира

    Температура плавления, С

    Массовая доля твердого жира, %

    при температуре, С

    10

    15

    20

    25

    30

    Молочный жир:



















    осенне-зимний период

    34–36

    42–50

    37–41

    20–23

    12–15

    7–9

    весенне-летний период

    30–32

    35–39

    22–25

    16–19

    5–8

    3–5

    Отвержденные растительные жиры:



















    «Акобленд»

    33–35

    48

    35

    25

    14,5

    8,0

    Соевый

    36–37

    97–98



    44,5–51,5



    17,5–19

    Кокосовый

    25–27

    33



    14,5



    0,1

    пальмовый

    33–36

    92



    33,0



    14,5


    Примечание: температура плавления (максимальная) указана согласно сертификату

    Подбор триглицеридного состава для аналогов молочного жира в весенне-летний период необходимо осуществлять на основе триглицеридов средней и повышенной плавкости для планомерного повышения температуры плавления и снижения температуры застывания смеси молочного и немолочного жиров, в осенне-зимний период — на основе глицеридов средней и пониженной плавкости для планомерного снижения температуры плавления и повышения температуры застывания смеси молочного и немолочного жиров.

    Для упрощения подбора немолочных жиров при выработке комбинированного масла ВНИИМС рекомендует пользоваться такими показателями жиров, как температура плавления и застывания.

    Температуры массового плавления и застывания основных групп триглицеридов молочного жира по сезонам года и немолочных жиров приведены ниже в табл. .
    Температуры массового плавления и отвердевания основных групп триглицеридов молочного жира и рекомендуемых для комбинированного масла немолочных жиров

    Период года

    Температура

    Молочный жир, С

    Растительные жиры или их композиции, С

    Весенне-летний

    Плавления

    30–32

    35–37

    Застывания

    17–20

    18–21

    Осенне-зимний

    Плавления

    34–36

    32–34

    Застывания

    21–23

    20–22


    Кроме того, для весенне-летнего периода года необходимо увеличить зону кристаллизации глицеридов с целью увеличения содержания твердого жира. Также необходимо увеличить содержание твердого жира и его соотношение с жидким жиром, что обусловливает снижение скорости кристаллизации глицеридов и будет способствовать формированию кристаллизационной структуры. Для осенне-зимнего периода года необходимо уменьшить зону кристаллизации с целью снижения содержания твердого жира; увеличить содержание жидкого жира и его соотношение с твердым для формирования коагуляционной структуры продукта.

    Все это необходимо учитывать разработчикам и производителям аналогов молочного жира для производства комбинированного масла.

    Длительное время за рубежом широко применялись насыщенные растительные масла – пальмовое и кокосовое – для приготовления картофельных чипсов, печенья, сдобы и других продуктов. Несколько лет тому назад в США пальмовое и кокосовое масла были исключены из рациона, так как учеными был показан их вред для сердечно-сосудистой системы. Пальмовое и кокосовое масла были заменены гидрогениизированными растительными жирами. Однако последние научные данные зарубежных ученых свидетельствуют о том, что гидрогенизированные растительные жиры также вредны для сердечно-сосудистой системы, как и пальмовое и кокосовое масла.

    Наиболее перспективным и целесообразным направлением в использовании растительных жиров для молочных продуктов является разработка и производство российской масложировой промышленностью отечественных аналогов молочного жира, не содержащих гидрогенизированных жиров.

    Глава 3. ПИЩЕВЫЕ ДОБАВКИ


    Пищевые добавки – группа природных или синтетических веществ, специально вводимых в сырье, полуфабрикаты или готовые пищевые продукты с целью совершенствования их технологии или придания им необходимых свойств и не употребляемых обычно в качестве пищевых продуктов и не являющихся макро- и микронутриентами.

    Число пищевых добавок, используемых в производстве пищевых продуктов в различных странах около 500, не считая комбинированных добавок, отдельных душистых веществ, ароматизаторов.

    Европейским Советом разработана система цифровой кодификации пищевых добавок с литерой Е. Она включена в кодекс ФАО-ВОЗ (ФАО – Всемирная организация здравоохранения, ВОЗ – Всемирная продовольственная и сельскохозяйственная организация ООН) для пищевых продуктов как международная цифровая система кодификации пищевых добавок. Каждой пищевой добавке присвоен цифровой трех- или четырехзначный код (в Европе с предшествующей литерой Е). Они используются в сочетании с названиями функциональных классов, отражающих группировку пищевых добавок по технологическим функциям.

    Применение пищевых добавок остро поставило вопрос об их токсичности. Под токсичностью понимается способность вещества наносить вред живому организму. Решающую роль играют: доза (количество вещества, поступающего в организм в сутки), длительность потребления, режимы, пути поступления в организм. Экспериментально обосновываются предельно допустимые концентрации (ПДК) – концентрации, которые не вызывают при ежедневном воздействии на организм в течение длительного времени отклонений в здоровье людей. Решение о возможном использовании рассматривается экспертными комитетами международных организаций ФАО-ВОЗ. Разешенные пищевые добавки по остроте, частоте и тяжести заболеваний относят к разряду веществ минимального риска.

    Пищевые добавки по их назначению можно разделить на следующие группы:

    вещества, улучшающие внешний вид продукта (красители и цветокорректирующие материалы);

    вещества, изменяющие структуру продукта (загустители, геле- и студнеобразователи);

    вещества, регулирующие свойства продукта (поверхностно-активные вещества);

    вещества, придающие продукту определенный вкус и аромат (вкусовые и ароматические вещества);

    вещества, повышающие срок хранения продукта (консерванты).

    ПИЩЕВЫЕ КРАСИТЕЛИ


    Для придания пищевым продуктам характерной для них окраски, измененной при технологической обработке (кипячение, стерилизация, сушка и т.д.) используют природные (натуральные) и синтетические (органические и неорганические) красители.

    Бета-каротин. Среди натуральных красителей необходимо выделить каратиноиды. Растительные каратиноиды – это красно-желтые пигменты, обусловливающие окраску ряда овощей, фруктов, жиров, яичного желтка и других продуктов. Примером каратиноидов является β-каротин, который выделяют из природных источников в смеси с другими каратиноидами (экстракт натуральных каратиноидов) или получают синтетическим путем.

    Для окраски пищевых продуктов (маргарина, сливочного масла. майонеза и некоторых других продуктов) применяют каратиноиды, выделенные из моркови, плодов шиповника, перца, а также полученные микробиологическим или синтетическим путем.

    Энокраситель получают из выжимок темных сортов винограда и ягод бузины в виде жидкости интенсивно красного цвета. Окраска продукта зависит от рН среды: красная окраска в подкисленных средах, в нейтральных и слабощелочных средах эндокраситель придает продукту синий оттенок. Поэтому при использовании эндокрасителя одновременно применяют и органические кислоты для создания необходимого рН среды.

    В последнее время в качестве желтых, розово-красных красителей начали использовать пигменты, содержащиеся в соке кизила, красной и черной смородины, клюквы, брусники, пигменты чая, а также красный краситель, выделенный из свеклы – свекольный красный.

    Сахарный колер – темно окрашенный продукт карамелизации различных видов сахаров, полученный по различным технологиям. Водные растворы сахарного колера представляют собой приятно пахнущую темно-коричневую жидкость. Применяется для окраски напитков, кондитерских изделий, в кулинарии.

    В последнее время пищевая промышленность широко использует синтетические красители. Они устойчивы к изменению рН среды, действию кислот, нагреванию, свету, обладают большой окрашивающей способностью, их легче дозировать. В большинстве случаев они дешевле натуральных красителей. Поступающие в продажу красители обычно разбавлены наполнителями (поваренная соль, сульфат натрия, глюкоза, сахароза, лактоза, крахмал, пищевые жиры), что упрощает их использование. При применении синтетических красителей необходимо убедиться в их токсикологической безопасности.

    ВЕЩЕСТВА, ИЗМЕНЯЮЩИЕ СТРУКТУРУ ПРОДУКТА


    К этой группе пищевых добавок относятся вещества, используемые для создания или изменения реологических свойств пищевых продуктов (регулирующие консистенцию): загустители, желе- и студнеобразователи. Загустители используют для получения коллоидных растворов повышенной вязкости, студнеобразователи – для получения поликомпонентных нетекущих систем, включающих высокомолекулярный компонент и низкомолекулярный растворитель. Гелеобразователи (желирующие вещества) – для получения структурированных коллоидных систем. Четкого разделения между этими группами добавок нет.

    Загустители, геле- и студнеобразователи связывают воду, в результате коллоидная система теряет свою подвижность и изменяется консистенция пищевого продукта. В химическом отношении это макромолекулы, в которых равномерно распределены гидрофильные группы, взаимодействующие с водой.

    Среди них натуральные природные вещества растительного (кроме желатина) происхождения: желатин, пектин, агароиды, камеди и вещества, получаемые искусственно (полусинтетически), в том числе из природных объектов (метилцеллюлоза, карбоксиметилцеллюлоза, амилопектин, модифицированные крахмалы и др.).

    Желатин (студнеобразователь) – белковый продукт, представляющий собой смесь линейных полипептидов с различной молекулярной массой и их агрегатов, не имеет вкуса и запаха. Желатин получают из костей, хрящей, сухожилий животных. Он растворяется в горячей воде, при охлаждении водные растворы образуют гель. Желатин применяют при изготовлении желе (фруктовых и рыбных), мороженого, кремов, жевательной резинки, в кулинарии. В России и большинстве стран желатин применяют без ограничений.

    Крахмал и модифицированный крахмал. Крахмал и его фракции (амилопектин, декстрины) и модифицированные крахмалы применяются в качестве загустителей, студнеобразователей и желирующих веществ в кондитерской, хлебопекарной промышленности, при производстве мороженого.

    Модификация крахмалов позволяет существенно изменить их строение и свойства (гидрофильность, способность к клейстеризации, студнеобразование), а, следовательно, и направление использования.

    Окисленные крахмалы образуют клейстеры с пониженной вязкостью и повышенной прозрачностью. Их используют в технологии мороженого, при производстве мармеладов и лукума.

    Набухающие крахмалы способны набухать и растворяться в холодной воде. Они позволяют быстро приготовлять желеобразные десерты, кремовые смеси, пудинги, соусы.

    Крахмалофосфаты образуют клейстеры повышенной прозрачности и вязкости, они устойчивы к нагреванию, кислотам, перемешиванию. Применяются при производстве майонезов, продуктов детского питания, соусов, приправ. Клейстеры крахмалофосфатов устойчивы к действию низких температур (замораживанию), с их использованием готовят продукты, сохраняемые в замороженном виде (паштеты, замороженные обеды, кремы и т.д.).

    Пектиновые вещества – группа высокомолекулярных гетерополисахаридов, входящих совместно с целлюлозой, гемицеллюлозой, лигнином в состав клеточных стенок и межклеточных образований высших растений, а также присутствующих в растительных соках некоторых из них. Пектиновые вещества способны образовывать гели, связывать воду, взаимодействовать с катионами. Они играют важную роль в физиологических процессах, участвуют в водном и ионном обмене. Эти же свойства обуславливают их широкое применение в пищевой промышленности. В настоящее время выпускают несколько видов пектинов, выделяемых из различных источников сырья и отличающихся по составу и свойствам: яблочный, цитрусовый, свекловичный, пектин из корзинок подсолнечника, а также комбинированные пектины из смешанного сырья. Пектины, выделенные из яблочных выжимок и корзинок подсолнечника, являются высокомолекулярными, свекловичный и цитрусовый пектины – низкомолекулярными. В яблочных пектинах наблюдается равномерное распределение карбоксильных групп по всей длине пектиновой молекулы, в цитрусовых – неравномерное.

    Строение молекул пектина определяет их основные физико-химические и потребительские свойства: гелеобразование в водной среде и комплексообразование с ионами поливалентных металлов . Образование геля – трехмерной пространственной структуры, происходит в результате взаимодействие пектиновых молекул между собою. Процесс зависит от молекулярной массы, степени этерификации молекул пектина, распределения карбоксильных групп; на его эффективность влияют температура и рН среды. Высокоэтерифицированные пектины образуют гели в присутствии кислот (рН 3.1-3.5) при содержании сахарозы более 50 %, низкоэтерифицированные – в присутствии ионов поливалентных металлов, например, кальция, независимо от содержания сахарозы, в диапазоне рН (рН от 2.5 до 6.5). В последнее время пектины широко используют в качестве профилактических средств для групп населения, проживающих в зонах риска отравления тяжелыми металлами и радионуклидами, из-за особенности низкоэтерифицированных пектинов образовывать комплексные соединения с ионами цинка, свинца, кобальта, стронция, радионуклидами.

    Высокоэтерифицированные пектины применяют в технологии мороженого, фруктовых соков, майонеза; низкоэтирифицированных – студней, овощных желе и т.п.

    Полисахариды, выделенные из морских водорослей, являются важным видом пищевых добавок. К ним относятся: агар-агар, агароиды (черноморский агар), альгиновая кислота и ее соли и др.

    Агар-агар – представляет собой смесь агарозы и агаропектинов (смесь полисахаридов сложного строения, содержащая глюкуроновую кислоту и эфирно-связанную серную кислоту). Агар-агар получают из багряных (красных) морских водорослей (амфилия), произрастающих в Белом море и Тихом океане. В зависимости от водорослей состав выделенных полисахаридов может изменяться, так выделена агароза. Агар незначительно растворяется в холодной воде, но набухает в ней. В горячей воде образует коллоидный раствор, который при остывании дает хороший прочный сгусток, обладающий стекловидным изломом. Для получения таких студней не нужно добавлять сахар и кислоту, его желирующая способность в 10 раз выше, чем желатина. Наоборот, способность агара образовывать студни уменьшается при их нагревании в присутствии кислот. Применяют агар при приготовлении мороженого, при осветлении соков, при получении желе, пудингов, а в кондитерской промышленности – желейного мармелада, зефира.

    Агароид (черноморский агар) получают из водорослей филлофора, растущих в Черном море. Плохо растворим в холодной воде, в горячей воде образует коллоидный раствор, при охлаждении которого формируется студень. Студнеобразующая способность в два раза ниже, чем у агара.

    По химической природе к агару и агароидам близок каррагинан, получаемый из красных водорослей.

    Каррагинан – полимеры, состоящие из сульфатированных в различной степени звеньев галактозы и сульфатированных или нет звеньев 3, 6-ангидрогалактозы, поочередно соединенных 1-3 и 1-4-связями. Это экстракт водорастворимых полисахаридов красных водорослей, произрастающих в основном у берегов шотландского города Каррик. Используется в пищевой промышленности как стабилизатор, эмульгатор, загуститель, гелеобразователь при производстве желе, глазури, кремов, кондитерских изделий, заливного, пудингов, теста, мясных консервов, соусов, молочных продуктов, напитков, мороженого, мягкого сыра и других продуктов.

    По химической природе к агару и агароиду близок фурцеллеран, полисахарид, получаемый из морской водоросли – фурцелларии. По способности к студнеобразованию он значительно уступает рассмотренным ранее агароидам. Применяется при производстве мармелада и желейных конфет.

    Альгиновая кислота и ее соли (альгинаты) – это полисахариды, являющимися компонентами бурых водорослей. Альгиновая кислота в воде не растворяется, не связывают ее альгинат натрия и калия, хорошо растворимые в воде. Альгиновая кислота и ее соли применяются для осветления соков; в качестве желирующих веществ и эмульгаторов. Пропиленгликольальгинат, не осаждающийся в кислых растворах, применяют в качестве стабилизатора в производстве мороженого, концентратов апельсинового сока.

    Целлюлоза, простые эфиры целлюлозы. В качестве пищевых добавок широко применяются модифицированная целлюлоза и ее простые эфиры. Целлюлоза используется в качестве эмульгатора, добавки, препятствующей слипанию и комкованию пищевых продуктов. Из эфиров целлюлозы применяют метилцеллюлозу, карбоксиметилцеллюлозу и др. Эфиры целлюлозы используют при изготовлении мороженого, соусов, при производстве напитков. В молочной промышленности карбоксиметилцеллюлозу применяют для осаждения казеина молока.

    ВЕЩЕСТВА, РЕГУЛИРУЮЩИЕ СВОЙСТВА СЫРЬЯ И ПРОДУКТА


    К ним относятся поверхностно-активные вещества (ПАВ), с помощью которых можно регулировать свойства гетерогенных систем , которыми являются сырье и готовый продукт. Эти вещества при растворении или диспергировании в жидкость, концентрируясь на поверхность раздела фаз, снижают поверхностное натяжение. Это позволяет использовать их и для получения тонкодисперсных и устойчивых коллоидных систем. Обычно это соединения, молекулы которых имеют дифильное строение, то есть содержат полярные гидрофильные и неполярные гидрофобные группы. Первые обеспечивают растворимость в воде, вторые (гидрофобные) – в неполярных растворителях. Соответствующим образом они располагаются на поверхности раздела фаз. По типу гидрофильных групп различают ионные и неионные (неионогенные) поверхностно- активные вещества. Первые диссоциируют на ионы, одни из которых поверхностно-активны, другие (противоионы) – нет. В зависимости от знака заряда поверхностно-активного иона ПАВ делятся на анионные, катионные и амфотерные (амфолитные).

    Молекулы неионных ПАВ не диспергируют в растворе. В технологии пищевых продуктов используют как неионогенные, так и ионогенные ПАВ.

    Так в технологии плавленых сыров, в качестве солей-плавителей и эмульгаторов жира используют фосфаты натрия.

    В качестве ПАВ используют белки животного (например, молочные белки) и растительного происхождения.

    Поверхностно-активные вещества, применяемые в технологии пищевых продуктов, представляют собой многокомпонентные смеси, химическое название препаратов соответствует лишь основной части продукта.

    К пищевым ПАВ относятся моно- и диглицериды (производные моноглицеридов), фосфолипиды, эфиры полиглицерина, сахарозы, сорбита и другие соединения.

    Моно- и диглицериды оказывают эмульгирующее, стабилизирующее и пластифицирующее действие в производстве майонезов, маргаринов; в хлебопечении – улучшается качество хлеба, замедляется процесс черствения.

    Производные моноглицеридов (лактаты моноглицеридов, эфир моноглицерида и яблочной кислоты, эфир моноглицерида и лимонной кислоты и т.д.) нашли применение в производстве мороженого, майонеза, маргаринов и других продуктов.

    Фосфолипиды как природные, так и синтетического происхождения применяют в хлебопекарной, кондитерской, маргариновой отраслях промышленности. Природные фосфолипиды получают из растительных масел при их гидратации. Синтетические фосфолипиды представляют собой сложную смесь аммониевых или натриевых солей различных фосфатидных кислот с триглицеридами и отличаются от природных фосфатидов отсутствием в их молекулах азотистых оснований. Фосфатиды применяют в производстве мороженого, напитков, хлеба, шоколада.

    Эфиры полиглицерина представляют собой сложные эфиры жирных кислот с полиглицерином. Эфиры сахарозы по составу являются сложными эфирами природных кислот с сахарозой, эфиры сорбита – сложные эфиры шестиатомного спирта сорбита с природными кислотами. Все вышеперечисленные эфиры нашли применение в пищевой промышленности.

    ВКУСОВЫЕ И АРОМАТИЧЕСКИЕ ДОБАВКИ


    К ним относятся подслащивающие добавки и ароматизаторы. К подслащивающим добавкам относятся вещества несахарной природы, которые придают пищевым продуктам сладкий вкус. Однако на практике в эту группу часто включают все сладкие добавки. Основное сладкое вещество, используемое человеком – сахароза.

    В последнее время, с учётом требований науки о питании, расширилось производство низкокалорийных продуктов, а также продуктов для людей, страдающих рядом заболеваний, в первую очередь, больных диабетом, расширяется выпуск заменителей сахарозы, как природного происхождения, так и синтетических. В пищевой промышленности возрастает использование подслащивающих продуктов из крахмала: патоки, глюкозо-фруктозных сиропов, глюкозы.

    Среди подслащивающих добавок следует отметить солодовый экстракт, лактозу, сорбит и ксилит, аспартам.

    Солодовый экстракт - водная вытяжка из ячменного солода, которая состоит из глюкозы, фруктозы, мальтозы, сахарозы, белков, минеральных веществ, ферментов. Массовая доля сахарозы достигает 5%. Используется при приготовлении продуктов детского питания, в кондитерской промышленности.

    Лактоза - молочный сахар. Используется в производстве продуктов детского питания и специальных кондитерских изделий.

    Сорбит и ксилит являются многоатомными спиртами (полиолы). Сладость ксилита и сорбита по сравнению с сахарозой 0.85 и 0.6 соответственно. Они практически полностью усваиваются организмом. Ксилит, кроме того, является стабилизатором, обладающим влагоудерживающей способностью и эмульгирующими свойствами, оказывает положительное влияние на состояние зубов, увеличивает выделение желудочного сока и желчи.

    Аспартам представляет собой дипептид, в состав которого входят остатки аспарагиновой кислоты и фенилаланина. Аспартам в 200 раз слаще сахарозы и нетоксичен. Он удобен в использовании продуктов, которые не требуют тепловой обработки, а также продуктов лечебного назначения. В продуктах, которые подвергаются тепловой обработке, длительному хранению, его применение нецелесообразно из-за снижения степени сладости готового продукта.

    Цикламаты – натриевая (калиевая) и кальциевая соли цикламовой (аминосульфоновой) кислоты. Соединения с приятным вкусом, без привкуса и горечи, стабильные при варке, хорошо растворяются в воде. Сладость в 30 раз выше, чем у сахарозы. Применяются при производстве напитков, в том числе молочных.

    Сукралоза. Этот производный от сахара продукт изготавливают путем селективной замены в молекуле сахара трех гидроксильных групп на три атома хлора. Этот заменитель сахара в 600 раз слаще сахарозы. Сукралоза устойчива при хранении, ее можно добавлять в молочные продукты. Она остается стабильной в пищевых продуктах даже в средах с высокой кислотностью. Наиболее устойчива сукралоза в средах с рН 5-6, причем ее устойчивость возрастает с увеличением рН от 1 до 5,5.

    Ацесульфам К. В нашей стране этот подсластитель больше известен как «сунетт», открыт в Германии в 1967 г. Сладость в 200 раз выше, чем у сахарозы.

    К ароматизаторам относятся вещества, усиливающие вкус и аромат, вносимые в пищевые продукты, с целью улучшения их органолептических свойств. Их условно можно разделить на природные вещества и соединения имитирующие природные. Первые выделяют из фруктов, овощей и растений в виде соков, эссенций или концентратов, вторые получают синтетическим путём. Способы получения соединений последней группы могут быть самыми разнообразными. В нашей стране не разрешается применение синтетических веществ, усиливающих аромат, свойственный данному продукту и введение их в продукты детского питания. Химическая природа ароматизаторов может быть самой разнообразной. Они могут включать большое число компонентов, среди них эфирные масла, альдегиды, спирты, сложные эфиры и т.д. Из вкусовых веществ, усиливающих аромат и вкус отметим глутаминовую кислоту и её соли, применяемые при производстве концентратов первых и вторых блюд.

    ВЕЩЕСТВА, ПОВЫШАЮЩИЕ СОХРАННОСТЬ ПРОДУКТА И УВЕЛИЧИВАЮЩИЕ СРОКИ ХРАНЕНИЯ


    К ним относятся антиокислители и консерванты.

    Антиокислители замедляют окисление ненасыщенных жирных кислот, входящих в состав липидов. Обычно их используют в жировых и жиросодержащих продуктах. Из природных антиокислителей необходимо, в первую очередь, отметить токофероллы, они присутствуют в ряде растительных масел (в частности тыквенное масло). Из синтетических – бутилоксианизол и бутилокситолуол – применяются в жировых продуктах, в первую очередь, в топлёных, кулинарных и кондитерских жирах.

    Консерванты повышают срок хранения продуктов, защищают от порчи, вызванной микроорганизмами. Остановимся только на химических консервантах, добавляя которые можно замедлить или предотвратить развитие бактерий, плесеней, дрожжей и других микроорганизмов. В ряде случаев целесообразно использовать смесь нескольких консервантов. Нет универсальных консервантов, которые были бы пригодны для всех пищевых продуктов. Одним из наиболее распространённых консервантов является диоксид серы - SO2 (сернистый газ). Применяют и соли сернистой кислоты (Na2SO3, NaHSO3). Сернистый газ и соли сернистой кислоты (сульфиты) подавляют развитие плесневых грибов, дрожжей, некоторых бактерий. И применяются для сохранения соков, плодоовощных пюре, повидла и т.д. Сернистый газ разрушает витамин B1.

    В 1996 г. в перечень пищевых добавок, разрешённых в России для применения в пищевых продуктах, включён фермент лизоцим.

    Сотрудниками ВНИИМС была исследована возможность использования лизоцима в качестве консерванта в технологии плавленых сыров. Установлено, что лизоцим гидрохлорид в дозе 250 мг на 100 г продукта обеспечивает снижение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в 3–8 раз, в зависимости от вида сыра, резко тормозит размножение и предотвращает спорообразование лактатсбраживающих бактерий, а также протеолитических клостридий.

    Контрольные вопросы и задания. 1. Каковы особенности технологии жидкого соевого молока? 2. Каковы особенности технологии сухого соевого молока? 3. В производстве каких молочных продуктов используются растительные жиры и жировые системы? 4. Что такое пищевые добавки? Дайте краткую характеристику пищевых добавок.


    1   ...   6   7   8   9   10   11   12   13   ...   49


    написать администратору сайта