Главная страница
Навигация по странице:

  • 4.1. Структура системы коммутации

  • 4.2. Элементная база систем коммутации

  • Системы связи персонального вызова Структура пейджинговых систем

  • Пейджинговый протокол POCSAG

  • Пейджинговый протокол ERMES

  • Лекция 9. Тема 9 Телекоммуникационные системы Классификация телекоммуникационных систем


    Скачать 419.79 Kb.
    НазваниеТема 9 Телекоммуникационные системы Классификация телекоммуникационных систем
    Дата05.10.2022
    Размер419.79 Kb.
    Формат файлаdocx
    Имя файлаЛекция 9.docx
    ТипДокументы
    #715145
    страница5 из 9
    1   2   3   4   5   6   7   8   9

    4. Основы автоматической коммутации

    4.1. Структура системы коммутации

    Система коммутации – комплекс оборудования, предназначенный для приема и распределения поступающей информации по направлениям связи.

    Таблица 4.1 – Классификация коммутационных систем

    Классификационный признак

    Коммутационная система

    Тип коммутационного и управляющего оборудования

    ·  декадно-шаговые

    ·  координатные

    ·  квазиэлектронные

    ·  электронные

    Форма представления сигналов

    ·  аналоговые

    ·  цифровые

    Вид передаваемой информации

    ·  телефонные

    ·  телеграфные

    ·  передачи данных

    ·  вещания

    Место, занимаемое в телекоммуникационной сети

    ·  центральные

    ·  узловые

    ·  оконечные

    ·  транзитные

    ·  узлы входящих сообщений (УВС)

    ·  узлы исходящих сообщений (УИС)

    Территориальное деление

    ·  междугородные

    ·  городские

    ·  сельские

    ·  учрежденческие

    Емкость

    ·  малой емкости

    ·  средней емкости

    ·  большой емкости

    Разделение каналов

    ·  с пространственным разделением

    ·  с временным разделением

    Способ коммутации

    ·  коммутация каналов

    ·  коммутация пакетов

    ·  коммутация сообщений

    Для выполнения своих функций коммутационная система должна иметь в своем составе следующие виды оборудования (рисунок 4.1):

    1)     Блоки абонентских линий (БАЛ) осуществляют подключение абонентских линий (АЛ) к системе.

    2)     Блоки соединительных линий (БСЛ), к которым через КСЛ (комплекты соединительных линий) происходит подключение соединительных линий (СЛ) для связи с другими коммутационными системами.

    3) Коммутационное поле (КП)  осуществляет коммутацию входящих линий с исходящими. Коммутационное поле может быть построено на основе пространственного разделения каналов и тогда в качестве коммутационных элементов используются многократные координатные соединители (МКС), герконовые реле, ферриды. Коммутационное поле с временным разделением каналов строится на основе применения импульсно-кодовой модуляции (ИКМ) и использует в качестве элементов полупроводниковые запоминающие устройства и логические интегральные микросхемы.

    4) Система управления (СУ) – выполняет все логические функции по управлению процессами установления соединений.

    5) Генераторное оборудование – осуществляет формирование акустических сигналов.



    Рисунок 4.1 – Обобщенная структура коммутационной системы


    4.2. Элементная база систем коммутации

    Под коммутацией понимается любой вид переключения электрических цепей (замыкание, размыкание, переключение с одной цепи на другую). Для реализации процесса коммутации применяются коммутационные приборы. Коммутационным прибором называется устройство, обеспечивающее замыкание, размыкание и переключение электрических цепей, подключенных к его входам и выходам, при поступлении управляющего сигнала [23]. Замыкание или размыкание электрической цепи в коммутационном приборе осуществляется коммутационным элементом, который в простейшем случае представляет собой один контакт на замыкание.

    К коммутационному прибору могут подключаться линии с различной проводностью, которая определяется количеством одновременно коммутируемых проводов. Для коммутации линий с различной проводностью (двух-, трехпроводные и т. д) требуется несколько коммутационных элементов, которые объединяются в коммутационную группу, элементы которой переключаются одновременно под воздействием управляющего сигнала. В коммутационном приборе в зависимости от числа подключаемых линий может быть установлено различное число коммутационных групп. Совокупность коммутационных групп, обеспечивающих коммутацию входов и выходов, называется коммутационным полем прибора. Местоположение коммутационной группы в коммутационном поле прибора называется точкой коммутации.

    Цикл работы коммутационного прибора (рисунок 4.2) состоит из трех фаз:

    1)  фаза срабатывания (замыкания), длительность которой определяется временем переключения прибора из нерабочего состояния в рабочее и зависит от конструктивных особенностей и схемы включения управляющих цепей;

    2)  фаза удержания (активное состояние), длительность которой зависит от функций прибора;

    3) фаза выключения (отпускания), длительность которой определяется скоростью возврата прибора в нерабочее состояние и зависит от конструкции прибора и схемы включения управляющих цепей.



    Рисунок 4.2 – Цикл работы коммутационного прибора

    Коммутационные приборы могут быть классифицированы по следующим признакам:

    1)  по назначению:

    ·     коммутация цепей управления (реле);

    ·     коммутация трактов в поле (искатели, соединители различных типов);

    2) по способу удержания точки коммутации в рабочем состоянии:

    ·     механическое удержание;

    ·     электрическое (магнитный поток создается током, протекающим по обмоткам прибора);

    ·     магнитное (магнитный поток для удержания создается либо постоянным магнитом, либо за счет остаточной индукции сердечника или контактных пружин).

    Коммутационные приборы характеризуются структурными, электрическими и временными параметрами.

    К структурным параметрам относятся:

    ·     число входов n;

    ·     число выходов m;

    ·     доступность D;

    ·     число одновременно коммутируемых линий (проводность) р.

    Производными от этих параметров являются общее число точек коммутации и коммутационных элементов, максимальное число одновременных соединений.

    К электрическим параметрам относятся:

    ·     коммутационный коэффициент К- отношение сопротивления коммутационного элемента в закрытом (разомкнутом) состоянии Rз к сопротивлению в открытом (замкнутом) состоянии Rз;

    ·     вносимое затухание в тракт;

    ·     уровень шумов;

    ·     величина тока, необходимая для переключения коммутационных элементов;

    ·     потребляемая мощность.

    К временным параметрам относятся:

    ·     время срабатывания (tср)– интервал времени между подключением питания к управляющим входам и переключением всех коммутационных элементов в рабочее состояние;

    ·     время отпускания (tотп) – интервал времени между подачей команды на отключение и возвратом всех коммутационных элементов в нерабочее состояние.

    Коммутационные приборы по структурным параметрам делятся на четыре типа:

    1) Коммутационные приборы типа реле (1×1), которые имеют один вход и один выход (условные изображения показаны на рисунке 4.3).



    Рисунок 4.3 – Коммутационный прибор типа реле (1×1)

    Коммутационный прибор данного типа может находиться в одном из двух состояний: разомкнутом или замкнутом. Переход из одного состояния в другое осуществляется под воздействием управляющего сигнала, который поступает на управляющий вход R из устройства управления.

    2) Коммутационные приборы типа искателей (1×m), которые имеют один вход и m выходов (условные изображения показаны на рисунок 4.4).



    Рисунок 4.4 – Коммутационный прибор типа искателя (1×m)

    В приборе можно установить соединение входа с любым выходов, следовательно, доступность прибора D=m. Одновременно в приборе может быть установлено только одно соединение.

    3) Коммутационные приборы типасоединителей(n×m), которые имеют n входов и m  выходов (условные изображения показаны на рисунок 4.5).



    Рисунок 4.5 – Коммутационный прибор типа соединителя (n×m)

    Каждому из n входов доступен любой из m выходов, следовательно, доступность прибора D=m. В приборе одновременно может быть установлено n соединений, если n£ m или m соединений, если n> m.

    4) Коммутационные приборы типамногократных соединителейn(1×m), которые имеют n входов и n×m выходов (условные изображения показаны на рисунок 4.6).

    Каждому из n входов доступны только m определенных выходов, следовательно, доступность прибора D=m из общего числа выходов n×m.



    Рисунок 4.6 – Коммутационный прибор типа многократного соединителя n(1×m)
    Системы связи персонального вызова

    Структура пейджинговых систем

    Сети персонального радиовызова (СПР), или пейджинговые сети (paging - вызов), - это сети односторонней мобильной связи, обеспечивающие передачу коротких сообщений из центра системы (с пейджингового терминала) на миниатюрные абонентские приемники (пейджеры).


    В простейшем случае СПР состоит из пейджингового терминала (ПТ), базовой стан­ции (БС) и пейджеров. Терминал, включающий пульт оператора и контроллер системы, вы­полняет все функции управления системой. БС состоит из радиопередатчика и антенно-фидерного устройства и обеспечивает передачу пейджинговых сигналов на всю зону дейст­вия системы, радиус которой может составлять до 100 км. Пейджеры осуществляют прием тех сообщений, которые им адресованы. В более сложных случаях (рисунок 3.1) СПР может иметь не­сколько радиопередатчиков, по возможности равномерно распределенных в пределах зоны действия, что позволяет более надежно обеспечить связью всю зону.

    Пейджинговый протокол POCSAG

    Во второй половине 70-х годов с целью объединения производителей пейджингового оборудования для создания стандарта, соответствующего требованиям рынка, была образована специальная группа – Post Office Code Standartisation Advisory Group. Ее аббревиатура POCSAG и дала название новому протоколу  (т.е. структуре организации передачи информации по каналу связи), спецификации которого были опубликованы в 1978 г. Первоначально код предназначался для передачи тональных сообщений со скоростью 512 бит/с. Но уже годом позже, в 1979 г., он был адаптирован для передачи цифровых и буквенно-цифровых сообщений. Разработка не была запатентована и стала использоваться в ряде стран в качестве стандарта. В 1982 г. этот стандарт был утвержден Международным консультативным комитетом по радиосвязи Международного союза электросвязи, как международный стандарт, получив наиме­нование Radio Paging Code №1 или сокращенно RPCN1 (Рекомендация 584). Однако это название протокола встречается, в основном, в сугубо официальных документах и вряд ли известно широкому кругу. Но сам факт признания POCSAG на таком уровне объясняет то, что этот протокол сегодня используется в подавляющем большинстве пейджинговых систем, оставив позади собственные разработки протоколов фирм Motorola и NEC. Основными преимуществами формата по сравнению с другими форматами того времени были скорость, эффективный алгоритм исправления ошибок и большое число производителей оборудования. Впоследствии с целью увеличения количества передаваемых сообщений протокол был адаптирован для передачи со скоростью 1200 бит/с, а в начале 90-х годов, со скоростью 2400 бит/с. В качестве модуляции используется частотная манипуляция.

    Как и любой метод однонаправленной передачи информации, POCSAG использует метод прямого исправления ошибок. Цифровые данные обычно собираются в слова, которые, в свою очередь, группируются в блоки. Код, в котором коррекция ошибок осуществляется в блоках, называется блочным. Одним из самых простых методов обнаружения/исправления ошибок является добавление избыточных битов. Например, цифровое слово из восьми бит может содержать один избыточный. Этот бит вставляется для определения, четное или нечетное число "единиц" в слове с целью выявления возможной ошибки. Для более наглядной иллюстрации представим, что передается семизначное слово "1100011". Общее число "единиц" в нем равно четырем. Тогда для проверки на четность избыточный бит должен быть равен "0", так что слово будет иметь вид "11000110". И, наоборот, для проверки на нечетность этот бит равен "1" и общее слово соответственно выглядит как ”11000111”.

    Приемники пейджеров обычно работают в условиях большого уровня помех и число ошибок довольно высоко (примерно одна ошибка на 15-18 передаваемых битов). Для борьбы с этим должны применяться более эффективные способы. В протоколе POCSAG в 32-битных кодовых словах используется циклический блочный код БСН 31,21 (получивший название по именам создателей Боуз-Чхоудхури-Хоквингем или просто БЧХ), где 31 - общая длина слова, 21 - число информационных бит в слове.

    Не вдаваясь во все тонкости алгоритма, скажем, что он позволяет исправлять две ошибки, а его адресная емкость равна 2 097152 адресам.

    Структура протокола POCSAG показана на рисунке 3.2. Протокол по своей сути является асинхронным. В начале каждой передачи стоит преамбула длиной не менее 576 бит, представляющая собой последовательность 10101010... Во время ее передачи пейджер переводится в режим "Прием сообщения", причем в интервале приема преамбулы осуществляется тактовая синхронизация. После этого следует передача "пачек" (batch), число которых произвольно.


    Каждая "пачка" состоит из слова синхронизации в ее начале и восьми кадров (frame). Так как слово синхронизации по длине равно одному 32-битному слову,  то "пачка" состоит из 17 слов. Структура кадров такова, что каждому из них (пронумерованному 0-7) соответствует группа пейджеров. Это означает, что каждый индивидуальный пейджер оказывается постоянно закрепленным за конкретным кадром и будет "слушать" адресную информацию только в своем собственном кадре. Кадр состоит из двух кодовых слов: адреса пейджера и сообщения плюс избыточные биты. Когда в кадре отсутствует сообщение, вместо адреса передается незанятое кодовое слово, имеющее определенный протоколом формат.

    Структура кодовых слов приведена на рисунке 3.2. Длина адресной части равна 18 бит, но действительный адрес пейджера равен 21 биту. Обычно эти три избыточных бита служат для определения номера кадра, содержащего адрес пейджера. Функциональные биты обычно используются для того, чтобы разрешить передачу многократных сообщений на один пейджер, таких как разные коды тональных посылок ("бипов"). Длина информационного поля в слове равна 20 бит, однако это не ограничивает размер сообщения, и в случае необходимости может быть передано дополнительное кодовое слово. Если нет, то сообщение заканчивается передачей в кадре следующей "пачки". Такой вариант используется для сохранения структуры протокола.













    В настоящее время протокол POCSAG применяется почти во всех странах, где внедрены системы персонального радиовызова. Однако из-за значительного увеличения нагрузки системы  POCSAG перестает соответствовать реалиям нынешнего времени - при трафике средней плотности, на одном радиоканале, использующем максимальную для протокола скорость 2400 бит/с, без потери качества обслуживания можно разместить примерно 20-25 тыс. пользователей. Это привело к возникновению следующего этапа развития пейджинга – разработке высокоскоростным протоколам FLEX и ERMES.

    Пейджинговый протокол ERMES

    Для создания единой европейской системы персонального радиовызова в конце 80-х годов несколько операторов, объединившихся под эгидой одной из комиссий Европейского Сообщества, принялись за разработку концепции. В 1989 году были разработаны рекомендации ЕЭС 166/3, формально положившей начало стандарту. По сути дела, он должен был стать для пейджинга тем, чем стали сети на основе GSM и DCS на рынке сотовой телефонии - всемирной универсальной технологией.

    В январе 1990 года, между 23 заинтересованными сторонами, в том числе 16 операторами из 8 стран, был подписан Меморандум о взаимопонимании, утвердивший график реализации проекта. Согласно ему, началом коммерческой эксплуатации сетей ERMES должен был стать декабрь 1992 г. Практически одновременно с этим за разработку стандарта принялся Европейский Институт Стандартизации в области Телекоммуникаций (ETSI), создавший для этой цели специальный Технический комитет пейджинговых систем. Результатом его работы стало появление и утверждение в 1992 г. довольно объемной спецификации стандарта ETS 300-133, иначе ERMES (European Radio Message System). В октябре 1994 года Международный союз электросвязи рекомендовал использовать ERMES в качестве международного стандарта в СПРВ различных стран мира. Но на 2002 год в коммерческой эксплуатации сети стандарта находятся лишь в нескольких (более 8) странах мира.

    Системы персонального радиовызова ERMES позволяют предоставлять следующие услуги:

    - передачу цифровых сообщений длиной 20-1600 знаков;

    - передачу буквенно-цифровых сообщений длиной от 400 до 9000 символов;

    - передачу произвольного набора данных объемом до 64 кбит;

    - возможность приема вызова и сообщений одним пейджинговым приемником (пейджером) во всех странах, входящих в СПРВ ERMES.

    Одним из условий, позволяющем обеспечить эту услугу, является договоренность стран, участвующих в проекте ERMES, выделять для этих систем единого частотного диапазона 169,4...169,8 МГц, что позволяет организовать 16 радиоканалов с разносом несущих частот в 25 кГц с использованием при приеме сигналов сканирующие по частоте приемники.

    Структура радиосигнала в системах ERMES выбрана таким образом, что позволяет повысить емкость трафика в 10-15 раз по сравнению с существующими аналоговыми СПРВ. При этом следует отметить, что ERMES является полностью цифровой системой, обеспечивающей скорость передачи информации 6,25 кбит/с.

    Структура радиоинтерфейса в системе ERMES показана на рисунке 3.3. Цикл передачи состоит из 60 циклов по одной минуте каждый, в свою очередь, каждый цикл содержит пять последовательностей по 12 с. Каждая из подпоследовательностей включает в себя 16 типов "пачек", которые условно обозначены от А до Р. Все пачки содержат четыре группы бит, позволяющие обеспечить:

    - синхронизацию;

    - передачу служебной системной информации;

    - передачу адреса;

    - передачу информационного сообщения.

    Процедура поиска и приема сообщения приемником пейджера заключается в следующем. Следует иметь в виду, что пейджер "не знает", во-первых, в каком из 16 каналов передается сообщение, предназначенное именно для него, и, во-вторых, в какой из 16 пачек (от А до Р) находится это сообщение. Поэтому, чтобы "выловить" сообщение из эфира, приемник настраивается на первый канал, просматривает все пачки, далее, если не было найдено сообщение с адресом данного пейджера, приемник перестраивается на следующую частоту, т. е. на следующий канал, и опять просматривает все пачки и так до тех пор, пока не будет найдена и принята информация, адресованная этому абоненту. После этого процедура повторяется снова. Возможна также ситуация, когда сообщение большого объема передается в определенном пакете (например, только в А), но последовательно на каждом из каналов.

    Протоколу ERMES свойственно экономичное использование источника питания. Например, при длине сообщения 40 знаков соотношение режимов работы "прием - дежурный прием (standbye)" может быть равно 1:200 при условии, что на передачу всего сообщения понадобилось 6 с. Так что при соотношении режимов работы только 1:70 и токе потребления приемника 30 мкА (что вполне реально достижимо в современных пейджерах) время непрерывной работы приемника составляет более 40 недель.

    Важным преимуществом также является более высокая помехоустойчивость системы ERMES, поскольку предполагается использование помехоустойчивого кодирования, а именно прямой коррекции ошибок (FES), циклического кода (30,18).

    Помимо преимуществ, связанных со структурой протокола, можно выделить еще и расширенный интерфейс доступа всевозможных систем связи к пейджинговой системе (см. рисунок 3.1). Эта особенность позволяет получить несколько более богатый набор сервисных услуг, среди которых можно выделить переадресацию пейджингового сообщения, приходящего на ваш пейджер, на пейджер другого абонента или переадресацию звонка, поступающего на радиотелефон стандарта GSM, в пейджинговую сеть, абонентом которой является владелец радиотелефона. Таким образом, он получает возможность выключать свой телефон и экономить аккумуляторную батарею, а человек, который звонит на мобильный телефон, может передать нужное сообщение. Кроме того, система позволяет осуществлять процедуру роуминга, т. е. абонент получает возможность использовать свой пейджер в странах, охваченных сетями ERMES. При этом пользователю только нужно сообщить оператору "родной" (или "домашней") сети о планах своего путешествия, и тогда оператор позаботится о том, чтобы все сообщения, поступившие для абонента, попадали в соответствующую пейджинговую сеть по месту его нахождения.

    Существенными достоинства­ми стандарта ERMES яв­ляются обеспечение совместимо­сти с европейским стандартом сотовой связи GSM в диапазоне 900 МГц и возможность роумин­га одного и того же пейджера в любых сетях, использующих стандарт ERMES. Недостатками являются сложность внедрения этого стандарта в существующие российские пейджинговые сети вследствие необходимости ис­пользования новых типов передающего и приемного оборудо­вания, что естественно потре­бует существенных капитальных вложений.

    .
    1   2   3   4   5   6   7   8   9


    написать администратору сайта