Главная страница
Навигация по странице:

  • 6.1 Гомогенные буровые растворы на водной основе 6.1.1 Техническая вода

  • 6.1.2 Водные растворы полимеров

  • 6.1.2.1 Полимерные буровые растворы на основе синтетических полимеров

  • 6.1.2.2 Полимерные буровые растворы на основе полисахаридов

  • Типы буровых растворов и условия их применения в опросы для изучения


    Скачать 330.5 Kb.
    НазваниеТипы буровых растворов и условия их применения в опросы для изучения
    Дата25.10.2022
    Размер330.5 Kb.
    Формат файлаdoc
    Имя файлаfile.2008-10-15 (6).doc
    ТипДокументы
    #753424
    страница1 из 4
      1   2   3   4

    6 ТЕМА: «Типы буровых растворов и условия их применения»

    вопросы для изучения:

    6.1 Гомогенные буровые растворы на водной основе

    6.1.1 Техническая вода

    6.1.2 Полимерные буровые растворы

    6.1.2.1 Полимерные буровые растворы на основе синтетических полимеров

    6.1.2.2 Полимерные буровые растворы на основе полисахаридов

    6.1.3 Водные растворы ПАВ

    6.1.4 Солевые буровые растворы

    6.2 Гомогенные углеводородные растворы

    6.3 Гомогенные газообразные очистные агенты

    6.4 Гетерогенные водные растворы с твердой дисперсной фазой

    6.4.1 Нестабилизированные глинистые суспензии и суспензии из выбуренных пород

    6.4.2 Гуматные растворы

    6.4.3 Лигносульфонатные растворы

    6.4.4 Хромлигносульфонатные растворы

    6.4.5 Полимерные недиспергирующие буровые растворы

    6.4.6 Гетерогенные ингибирующие буровые растворы на водной основе

    6.4.6.1 Алюминатные растворы

    6.4.6.2 Известковые растворы


    6.4.6.3 Безглинистые солестойские растворы (БСК)[2]

    6.4.6.4 Кальциевые растворы

    6.4.6.5 Гипсоизвестковый раствор

    6.4.6.6 Хлоркальциевые растворы

    6.4.6.8 Растворы, обработанные солями трехвалентных металлов

    6.4.6.9 Силикатные растворы

    6.4.6.10 Гидрофобизирующие растворы

    6.5 Соленасыщенные буровые растворы

    6.5.1 Необработанный глинистый соленасыщенный раствор

    6.5.2 Стабилизированный соленасыщенный раствор

    6.5.3 Раствор на основе гидрогеля магния [2]

    6.6 Растворы на нефтяной основе

    6.6.1 Известково-битумный раствор

    6.6.2 Инвертные эмульсионные растворы (ИЭР)

    6.6.3 Буровой раствор на углеводородной основе ИКИНВЕРТ

    6.6.4 Термостойкий раствор на углеводородной основе ИКИНВЕРТ-Т

    6.6.5 Высококонцентрированный инвертный эмульсионный раствор

    6.6.6 Термостойкий инвертно-эмульсионный раствор (ТИЭР)

    6.6.7 Термостойкая инвертная эмульсия на основе ЭК-1
    6.1 Гомогенные буровые растворы на водной основе

    6.1.1 Техническая вода

    Техническая вода является наиболее доступным и дешевым очистным агентом, в связи с чем, достаточно широко используется при бурении устойчивых пород в случае отсутствия флюидопроявлений.

    Кроме того, техническая вода служит основой, т. е. дисперсионной средой, для получения буровых растворов на водной основе.

    Качество техническая воды для целей бурения принято характеризовать жесткостью, степенью и составом минерализации.

    По степени минерализации, оцениваемой количеством растворенных солей в 1 литре воды, природные воды делятся на 4 группы:

    - пресные – до 1 г/л;

    - солоноватые – 1…10 г/л;

    - соленые – 10…50 г/л;

    - рассолы > 50 г/л.

    С точки зрения использования технической воды в качестве самостоятельного очистного агента наиболее важным показателем её качества является состав минерализации.

    Состав минерализации определяет коррозионную агрессивность воды по отношению к металлу и тампонажному (цементному) камню, проявляющуюся в разрушении металла и растворении компонентов цементного камня.

    Для приготовления качественных буровых растворов целесообразно использовать воду с общей жесткостью (Ca2+ + Mg2+) не более 3 - 4 мг×экв/л.

    Для смягчения жесткой воды ее обрабатывают NaOH, Na2CO3 и Na3PO4×10H2O.

    Степень минерализации воды оказывает существенное влияние на эффективность действия (расход) химических реагентов и степень гидратации глин.

    Кроме своей доступности и дешевизны вода, как очистной агент, обладает целым рядом и других преимуществ: малой вязкостью (1 мПа×с при t = 20,5 ºС); низкой плотностью (1000 кг/м3); высокой охлаждающей способностью.

    Совокупность этих свойств воды обеспечивает эффективную работу породоразрушающего инструмента (высокую механическую скорость бурения и проходку на долото), гидравлических забойных двигателей и буровых насосов.

    Однако вода в перерывах между циркуляциями не удерживает шлам в скважине во взвешенном состоянии, вызывает интенсивную гидратацию, набухание и диспергирование глинистых пород. Поэтому применение воды как эффективного бурового раствора допустимо лишь при бурении сравнительно неглубоких скважин в твердых неглинистых породах карбонатно-песчаного комплекса, а также в гипсах и водоносных горизонтах.

    Проникновение воды в продуктивный пласты резко снижает их нефтеотдачу вследствие создания водяного барьера и образования устойчивых водонефтяных эмульсий, препятствующих притоку нефти в скважину, что серьезно затрудняет освоение и ввод скважин в эксплуатацию.

    Кроме того, вода замерзает при отрицательной температуре, что так же ограничивает область ее применения.
    6.1.2 Водные растворы полимеров
    Полимерными называются водные растворы высокомолекулярных веществ (акрилатов и полисахаридов), молекулы которых построены путем многократного повторения одного и того же звена - мономера.

    Например, мономер ПАА:

    CH2CH

    ç

    CONH2 n
    Если в молекуле чередуются разные мономеры, то такое высокомолеклярное вещество (ВМВ) называется сополимером.

    ВМВ могут быть полиэлектролитами и неэлектролитами.

    Кполиэлектролитам относятся реагенты на основе водорастворимых эфиров целлюлозы и на основе акриловых полимеров, которые при диссоциации в воде образуют сложный анион и простой катион.

    К неэлектролитам относятся крахмальные реагенты, содержащие полярные группы, не имеющие заряда.

    Впервые полимерные растворы начали применяться в США в начале 60-х годов. В нашей стране полимерные буровые растворы впервые нашли применение лишь в первой половине 70-х годов. С их применением связаны работы Ахмадеева Р.С., Дедусенко Г.Д., Кистера Э.Г., Крысина Н.Н., Липкеса М.И., Скальской У.А., Нацепинской А.М., Турапова М.К., Шарипова А.У, Пенькова А.И., Хариева И.Ю, Андреcона Б.А., Минхайрова К.Л. и др. В качестве полимеров использовались ГПАА, метас, гипан, реагент К-4. При необходимости в раствор добавляли ингибирующие добавки, некоторые виды отходов металлургических и химических производств.

    Технологическая эффективность полимерных реагентов обусловлена целым рядом специфических характеристик, присущих только им и отличающих их от других реагентов. К этим характеристикам полимеров относят огромную молекулярную массу, конформационное и конфигурационное многообразие, определенную и вполне удовлетворительную прочность цепи макромолекулы, а также полиэлектролитные свойства и способность к межмолекулярным взаимодействиям, т.е. поверхностную активность. Например, повсеместно применяемые неорганические реагенты имеют молекулярную массу несколько десятков условных единиц (каустическая сода – 40, кальцинированная сода – 106 и т.д.), их называют низкомолекулярными; реагенты с молекулярными массами от 500 до 5000 - олигомеры, если же вещество имеет молекулярную массу свыше 5000, его относят к полимерам (высокомолекулярным соединениям). Молекулярная масса полимеров, используемых при бурении скважин, варьирует от 104 до 107 у.е. Многочисленными исследованиями было установлено, что полимерные растворы характеризуются псевдопластическим режимом течения, проявляющемся в том, что вязкостные свойства полимерных растворов в значительной степени зависят от скорости сдвига. Так, в диапазоне скоростей сдвига, характерном для течения в насадках долота, вязкость полимерного раствора приближается к вязкости воды. Это свойство обеспечивает снижение гидравлических сопротивлений и позволяет подводить к долоту значительно большую, по сравнению с использованием глинистого раствора, гидравлическую мощность.

    Полимерные растворы с низкой вязкостью способствуют эффективному разрушению горных пород в призабойной зоне пласта в результате быстрого проникновения раствора в трещины, образующиеся при разрушении породы долотом.

    В диапазоне скоростей сдвига, характерных для течения в затрубном пространстве, полимерный раствор имеет повышенную вязкость, что способствует более полному выносу выбуренной породы на поверхность и повышает устойчивость стенок скважины, за счет адсорбции полимера на породе.

    Одной из причин снижения эффективности бурения является значительное превышение пластового давления в скважине над забойным т.к., затрудняется отделение частиц разрушенной породы от забоя. Применение же полимерных буровых растворов позволяет регулировать значение дифференциального давления и бурить при сбалансированном давлении, когда гидростатическое давление равно пластовому, или незначительно превышает его. При этом уменьшается вероятность поглощения бурового раствора и прихватов бурильной колонны.

    Улучшению показателей бурения способствует смазывающая и противоизноская способность полимерных растворов за счет образования прочной адсорбционной пленки на трущихся поверхностях.

    Буровые растворы, содержащие полимеры обладают ингибирующей способностью, что важно при разбуривании неустойчивых глинистых пород. Адсорбируясь на глинистых частицах, полимер препятствует их гидратации и переходу в раствор.

    При вскрытии продуктивного пласта полимер частично отфильтровывается на границе скважина – пласт, образуя низко проницаемую корку (пленку) и частично проникает в приствольную зону продуктивного пласта [4]. Молекула полимера из-за отсутствия симметрии распределения электронов, является биполярной. Такие молекулы ведут себя так, если бы они были центрами положительных и отрицательных зарядов. Глинистые минералы, входящие в состав коллектора так же полярны. Если глины находятся в контакте с жидкостями, растворами, содержащими полярные вещества, то отрицательные центры на глинистых минералах притягивают положительные центры полярных веществ окружающей жидкости. Бредли показал, что полимеры, адсорбируясь на глинистых минералах, могут образовывать сложные молекулярные слои, кроме того, полимер, адсорбируемый на базальной плоскости глинистого минерала, вытесняет воду с этой поверхности. А неорганические катионы, как показал Мак-Эван, присутствующие на поверхности глинистого минерала не обязательно вытесняются адсорбцией органических молекул [5].

    Таким образом, полимер, находясь в поровом пространстве и адсорбируясь на поверхности порового канала, сужает его, тем самым, снижая эффективную проницаемость, с другой стороны, адсорбируясь на глинистых минералах, входящих в состав коллектора, предотвращает их гидратацию и набухание. Применение полимерных растворов позволяет создавать малопроницаемые корки, пленки-корки, уменьшающие влагоперенос фильтрата бурового раствора в глинистые породы и тем самым, обусловливающие длительную устойчивость стенок скважины.

    Флокулирующие свойства полимеров обусловливают высокую степень очистки безглинистых растворов от частиц выбуренной породы. В 1960-1980 годах за рубежом для очистки бурового раствора широко применялись полимеры – флокулянты: флоксит, рапидол, лосол, пушер, седипур, биополимеры и др. При введении полимеров в раствор в количестве от сотых до тысячных долей от общего объема раствора происходит агрегирование мелких взвешенных частиц выбуренной породы с помощью полимерных мостиков. Поскольку масса связанных твердых частиц увеличивается, они оседают под действием гравитационных сил в желобной системе, и к буровым насосам поступает осветленная (очищенная) жидкость.

    В последние годы, считается, что лучшей полимерной основой для буровых растворов служат реагенты полисахаридной природы – производные целлюлозы и крахмала, которые кроме перечисленных выше преимуществ полимеров проявляют высокие эксплуатационные свойства, одновременно легко подвергаются деструкции и тем самым сохраняют естественную проницаемость коллекторов и не загрязняют окружающую среду [6]. Полисахариды способны во время строительства скважины образовывать кольматационный экран, способный не пропускать фильтраты буровых и цементных растворов в продуктивный пласт и со временем саморазрушаться (деструкция до простых сахаров) восстанавливая первоначальную проницаемость коллектора.

    Широкое применение полимеров в составе бурового раствора позволяет сократить расход химических реагентов и материалов, уменьшить затраты физического труда, что способствует сокращению сроков строительства скважин и экономии материальных затрат.

    Недостатки полимерных растворов: низкая стойкость к действию ионов кальция и других поливалентных металлов; высокая стоимость импортных ВМВ (3…16 тыс. долларов за тонну) и дефицитность отечественных (потребности в полимерных реагентах удовлетворяются только на 40…50 %).
    6.1.2.1 Полимерные буровые растворы на основе синтетических полимеров

    В ряду синтетических высокомолекулярных соединений, применяемых для обработки промывочных жидкостей, следует выделить полиакриламид, молекулярная масса которого достигает 6106 у.е. Из известных синтетических полимеров такие же значения молекулярной массы имеет лишь полиэтиленоксид, который редко применяется при бурении скважин из-за дефицита.

    Отечественный полиакриламид выпускается без контроля таких характеристик как молекулярная масса, молекулярно-массовое распределение, степень гидролиза; производится неочищенным, по разным технологиям (известковой, аммиачной). Все это вызывает трудности в применении полиакриламида (ПАА) для обработки промывочных жидкостей.

    В ряде рецептур полимерных буровых растворов вместо ПАА используется гидролизованный полиакрилонитрил (гипан) [7].

    Для приготовления 1 м3 безглинистого бурового раствора требуется 975 - 970 л воды и 25 - 30 кг ПАА (8 %-ной концентрации).

    Для приготовления полимерного недиспергирующего раствора можно использовать пресный раствор, обработанный УЩР. Предварительно определяют содержание глинистой фазы и при необходимости ее снижения раствор разбавляют водой, а затем вводят 0,5 %-ный раствор ПАА из расчета 10-20 л/м3.

    При разбуривании высококоллоидных глин регулирование реологических свойств полимерных растворов затруднено. В таких случаях в раствор дополнительно вводят неорганичес­кие электролиты.

    При бурении в набухающих и неустойчивых глинистых сланцах используют полимерные недиспергирующие растворы, содержащие два (или более) акриловых полимера различ­ной молекулярной массы, из которых один, обычно высокой (10÷15)·106 молекулярной массы (ПАА) выполняет функции флокулянта и ингибитора глин, другой — средней (2÷6) 105 молекулярной массы (сайпан, М-14, метас, гипан, НР-5) обладает свойствами понизителя фильтрации и загустителя.

    Обычно их применяют в соотношений 1 : 5- 1 : 10.

    В случае повышения содержания глинистой фазы в растворе используются недиспергирующие разжижители-дефло-кулянты (НТФ, ПАК).

    Типичные рецептуры полимерных недиспергирующих растворов на основе акриловых полимеров приведены в таблице 6.1

    Таблица 6.1 – Полимерные растворы на основе акриловых полимеров

    Тип

    Номер состава

    1

    2

    3

    реагент

    содержание, %

    реагент

    содержание, %

    реагент

    содержание, %

    Ингибитор глин

    ПАА

    0,025-0,03

    РКП

    0,1-0,2

    ГКЖ-10

    ГКЖ-11

    0,4

    Понизитель фильтрации, загуститель

    Сайпан, гипан, НР-5

    0,125-0,15

    РКП

    0,1-0,2

    М-14

    0,2

    Разжижитель-дефлокулянт

    НТФ

    0,05-0,1

    ПАК

    0,05-0,1

    НТФ

    0,05-0,1


    6.1.2.2 Полимерные буровые растворы на основе

    полисахаридов

    В последнее время в мировой практике бурения для вскрытия продуктивных пластов применяют буровые растворы, содержащие в своем составе полисахариды.

    Схематически полисахариды представляют собой совокупность макромолекулярных цепей, образованных антигликозидными циклами различных углеводородных остатков, сцепленных непрочными гликозидными связями, а между цепями ван-дер-ваальсовыми силами, водородными связями или поперечными мостиками. Обилие функциональных групп обусловливает реакционную активность цепей и придает им характер полиэлектролитов. Природа углеводородных, функциональных групп, степень замещения, полимеризации и ветвления, однородность полимера, а также характер связей, конформация цепей и структур определяют коллоидно-химические свойства этих реагентов. Все они различаются по стабилизирующей способности и обладают сравнительно невысокой термической, ферментативной и гидролитической устойчивостью. Из исходных полисахаридов их получают путем деполимеризации и введения достаточного количества функциональных групп с тем, чтобы обеспечить водорастворимость и необходимый уровень физико-химической активности. Таким образом, свойства будущего реагента непосредственно связаны с природой исходного полисахарида.

    Так, Окуневым М.С., Сергиенко Л.П. и др. предложен безглинистый буровой раствор для вскрытия продуктивных пластов, содержащий карбоксиметилцеллюлозу 0,8-1,2 %, запечную пыль, уловленную электрофильтрами цементнообжиговых печей 16,8-37,2 %, борную кислоту или тетраборат натрия 0,1-0,1 % и воду [8]. Оригинальные и не традиционно используемые реагенты, дают возможность применения раствора только в единичных случаях.

    Третьяк А.Я. предложил буровой раствор, содержащий карбоксиметилцеллюлозу 0,5-2,0 %, декстриновую крошку - смесь углеводородов, образующихся при гидролизе картофельного и маисового крахмала 0,5-2,0 % и воду [9]. Декстриновая крошка является кольматационным наполнителем, а остальной состав раствора очень чувствителен к полисолевой минерализации, поэтому применение данного раствора носит ограниченный характер - только в пресных системах.

    Тем же автором предложен состав раствора, который содержит декстриновую крупу 0,5-3 %, КМЦ 0,5-2,0 %, едкий натр 0,1 % и воду [10]. Наличие каустической соды создает повышенное значение рН среды (до 14), что ограничивает их применение в условиях использования алюминиевых труб и негативно сказывается на устойчивости стенок скважины.

    Хариев И.Ю. предложил использовать для вскрытия продуктивных пластов буровой раствор, содержащий КМЦ 0,5-5,0 %, крахмал 1-3 % и воду [11].

    Разработаны ряд промывочных жидкостей на основе крахмала с добавками ферментных препаратов типа эндополигамектуролозы или амилолитических ферментов [12,13]. Однако действия и свойства ферментов в пластовых условиях еще не достаточно изучены, их влияние на коллекторские свойства пласта и нефтенасыщенность неоднозначны, поэтому применение таких промывочных жидкостей ограничено.

    Ряд полисахаридных реагентов имеет некоторые недостатки.

    Так, глюкогеновая кислота и ее соли являются пищевыми продуктом и кроме того они дорогостоящи [14-16].

    Декстрины не обеспечивают регулирование физико-химических свойств ни в пресных, ни в минерализованных системах. Декстриновая крошка может применяться в качестве кольматационного наполнителя [9,10].

    При использовании гуаровой смолы в безглинистом буровом растворе, раствор имеет предельно высокие реологические значения. При снижении реологических свойств до значений, приемлемых в бурении, происходит резкий рост показателя фильтрации.

    Карбоксиметилцеллюлоза очень чувствительна к полисолевой минерализации. Установлено, что в случае применения полимерсолевых растворов на основе КМЦ (раствор NaCl + КМЦ) наблюдается ухудшение гидродинамической связи в системе скважина-пласт. В результате взаимодействия фильтрата с пластовым флюидом (нефть и пластовая вода) и породой коллектора происходит снижение продуктивности нефтесодержащих объектов до 50% [11].

    В литературе имеются сведения о применении калиевых целлюлозных полимеров - калиевая карбоксиметилцеллюлоза (К-КМЦ) и калиевая полианионная целлюлоза (К-ПАЦ). Их использование позволяет получить ингибирующий калиевый раствор эффективный при бурении неустойчивых глинистых сланцев. На практике К-КМЦ и К-ПАЦ были испытаны при бурении скважин в различных районах Италии. Использование систем растворов на основе этих полимеров позволило, из-за сокращения затрат времени на борьбу с осложнениями, снизить общую стоимость бурения на 25% [17].

    Важным вкладом в совершенствовании растворов с низким содержанием твердой фазы было применение ксантановой смолы, образующейся в результате жизнедеятельности микроорганизмов ксантомоноскомпестрис. Данный полимер обеспечивает высокую несущую способность раствора на пресной или минерализованной воде. При низких скоростях сдвига этот полимер обладает хорошей способностью удерживать во взвешенном состоянии твердую фазу, но его вязкость заметно снижается с увеличением скорости сдвига.

    Разработаны ряд промывочных жидкостей на основе крахмала с добавление ферментных препаратов типа эндопалигамектуролозы или амилолипических ферментов. Однако действие и свойства ферментов в пластовых условиях еще недостаточно изучены. Их влияние на коллекторские свойства пласта и нефтенасыщенность неоднозначны, поэтому применение таких промывочных жидкостей ограничено [81,82].

    Анализ зарубежных и отечественных рецептур буровых растворов для вскрытия продуктивного пласта все же показывает, что наиболее распространенными и доступными реагентами для регулирования структурно-реологических и фильтрационных свойств являются крахмалсодержащие реагенты. Одним из свойств крахмала является его хорошая пленкообразующая способность, а также саморазрушение во времени.

    Крахмал представляет собой природную смесь полисахаридов (амилоза и амилопектин) с общей формулой (С6Н10О5)n. Крахмал образуется в результате фотосинтеза в листьях растений и откладывается в корневищах, клубнях и зернах[18,19].

    В крахмале содержится 15-20 % амилозы и 75-80 % амилопектина. Эти фракции обладают различными свойствами.

    Молекулы амилозы представляет собой линейные и слабо разветвленные спиралеобразные цепи. Амилоза в разбавленных растворах крахмала легко ассоциируется и осаждается. Это явление называется ретроградацией. В более концентрированных растворах это придает крахмалу способность к образованию геля.

    Амилопектин сильно разветвлен и обладает дихотомической структурой. Амилопектин устойчив в растворе и не обнаруживает склонностей к ретроградации.

    Крахмал белый порошок (под микроскопом зернистый) не растворим в холодной воде; в горячей набухает, образуя коллоидный раствор (крахмальный клейстер). При этом вода проникает между молекулами крахмала и нарушает водородные связи. Во время нагревания нарушается структура крахмальных зерен. Вначале идет органическое набухание, затем крахмальное зерно увеличивается в несколько раз, поглощая еще большее количество воды, оно - разрушается, теряя форму. Полное растворение крахмала невозможно, так как макромолекулы амилозы группируются в пучки или парокристаллические фибриллы.

    Клейстеризация крахмала может быть достигнута не только путем нагревания, но и другими способами, для этого его необходимо модифицировать. Достигается это путем преобразования многочисленных функциональных групп углеводородных цепей и их деполимеризацией.

    Наличие гликозидных связей обусловливает возможность гидролиза в результате нагревания, действия кислот, щелочей, окислителей и ферментов. Концевые альдигидные группы позволяют осуществлять реакции конденсации и окисления. Большое количество спиртовых гидроксилов дает возможность реакции окисления, этерификации, образованию алкоголятов. Возможно также модифицирование с образованием поперечных связей, придающим макромолекулам особую устойчивость. Во всех случаях достигается клейстеризация – основной механизм образования коллоидных крахмальных растворов [20].

    Бромиды, иодиды, роданиды натрия и некоторые другие соли усиливают набухание крахмала и позволяют клейтеризировать его на холоде. Обработка йодом улучшает стабилизирующие действия крахмала.

    Имеются различные методы модификации крахмала путем декстринизации кислотой, фосфатирования, окисления, обработкой ферментами, аминами, альдегидами и т.д.

    Крахмал подвержен физической, химической и биологической деструкции. Реакции деструкции протекают с разрывом химических связей в главной цепи макромолекулы с образованием макрорадикалов. Свободные макрорадикалы могут инициировать реакцию деструкции.

    При помощи ферментов и бактерицидов можно управлять процессом деструкции крахмала, а следовательно регулировать формирование и разрушение кольматационного экрана.
      1   2   3   4


    написать администратору сайта