процессы окисления111. Типичные окислители и реакции Окисление кислородом
Скачать 142.5 Kb.
|
PdHСодержаниеВведение………………………………………………………………………......2Типичные окислители и реакции……………………………………………..3 1.Окисление кислородом……………………………………………………….3 2.Окисление пероксидом водорода и гидропероксидами………………….4 3.Окисление О2 в гетерогенном катализе……………………………............4 4."Вакер"-процесс………………………………………………………………65.Синтез винилацетата (реакция Моисеева)………………………………...86.Халкон-процесс………………………………………………………………..97.Мерокс-процесс……………………………………………………………….10Список литературы…………………………………………………………….12ВведениеОкисление органических соединений занимает важное место в промышленном органическом и нефтехимическом синтезе. Окисляют парафиновые углеводороды, нафтены, арены, олефины, диены, спирты, альдегиды, алкины, меркаптаны, амины и др. органические соединения. В качестве окислителей используют O2, H2O2, ROOH, O3, N2O, неорганические окислители, включая Cl2, Br2, Cl2O и др. Под окислительным процессом понимают превращение, протекающее с увеличением степени окисления атома. Их подразделяют на окислительное замещение (замена одного или нескольких атомов молекулы на более электроотрицательные атомы), окислительное присоединение (разрыв кратных связей и образование простых связей с более электроотрицательным элементом) и окислительное элиминирование (реакции дегидрирования). Процессы окисления по разным признакам можно классифицировать следующим образом: парциальное окисление; глубокое окисление (обычно до СО2 и Н2О); гомогенное газофазное окисление – обычно радикально-цепное автоокисление или инициированное окисление, процессы горения; гомогенное гетерофазное (жидкофазное) окисление; гетерогенно-каталитическое окисление. Гомогенное жидкофазное окисление делится на радикально-цепное автоокисление (или инициированное окисление) и каталитическое окисление. Приведем типичные реакции каталитического жидкофазного и гетерогенного окисления органических соединений. Типичные окислители и реакции 1.Окисление кислородом а) Радикально-цепное жидкофазное окисление алкилароматических соединений (катализ комплексами металлов) б) "Мерокс"-процесс в) "Вакер"-процесс (окисление олефинов) г) Реакция Моисеева (синтез винилацетата) д) окислительное карбонилирование метанола е) окислительная димеризация Реакция Глязера-Залькинда: Реакция Моритани-Фудживары: ж) окислительное хлорирование 2.Окисление пероксидом водорода и гидропероксидами а) Реакция Прилежаева б) Эпоксидирование олефинов в) Окисление аренов и фенолов Pc* – замещенные фталоцианины г) "Халкон"-процесс 3.Окисление О2 в гетерогенном катализе а) окисление спиртов б) окисление ароматических соединений в) окисление алканов (окислительное дегидрирование) г) окисление олефинов д) окислительный аммонолиз парафинов и олефинов е) реакция Моисеева в паровой фазе ж) синтез аллилацетата з) окислительная димеризация метана и) окислительное хлорирование этилена Появились и новые окислители, например, закись азота N2O. Бензол окисляется этим окислителем на цеолитах ZSM-5, содержащих железо, при 350 – 400оС. Селективность , (18) где [Pd] – мономерный или димерный комплекс Pd(II). Окислением H-[Pd] и заканчивается каталитический цикл. Фирмы Hoechst и др. разработали для реакции (15) гетерогенный катализатор, содержащий соли Pd(II), Au(III) и KOAc на Al2O3. Процесс протекает при 175 – 200оС и давлении 0.5 – 1.0 МПа с высокой селективностью: 94% по этилену и 98% по уксусной кислоте. Состояние Pd(II) в условиях процесса и роль соединений золота пока не ясны. 6.Халкон-процесс. Эпоксидирование олефинов гидропероксидами осуществляется в промышленном варианте в растворах комплексов Mo(VI). В качестве ROOH используют 2-этилфенилгидропероксид (гидропероксид этилбензола, ГПЭБ), гидропероксид кумила (ГПК) и третбутилгидропероксид (ТБГП). В случае ГПЭБ сопряженно с пропиленоксидом получают стирол: (18) (19) Скорость реакции (18) описывается уравнением (20) (20) где FMo = 1 + KГПЭБ[ГПЭБ] + KМФК[МФК] + KОП[ОП] + KH2O[H2O] есть закомплексованность катализатора, МФК – метилфенилкарбинол, ОП – пропиленоксид. Ki – константы равновесия образования соответствующих комплексов Mo. Как видно из уравнения (20), процесс протекает с лимитирующей стадией, переходное состояние которой включает ГПЭБ, Mo(VI) и пропилен. Показано, что активным катализатором является пропиленгликолятный комплекс Mo(VI), реакция которого с ГПЭБ и C3H6 приводит к ОП. 7.Мерокс-процесс. Реакция окислительной димеризации меркаптанов (21) является основой процесса демеркаптанизации природного газа, попутных газов и нефтяных фракций, разработанного фирмой UOP. В водных растворах комплексов Co(II) (Pc*Co, Pc* – замещенный сульфофталоцианин) в присутствии NaOH происходит процесс образования радикалов RS·, димеризация которых дает RS-SR. Образующиеся Co(III) и H2O2 также окисляют RSH до RS-SR, и в результате получается реакция (21). Нерастворимый дисульфид отделяется от воды, а водный раствор NaOH с катализатором направляется на экстракцию RSH из газа и нефти. Список литературы 1. Реутов О.А., Курц А.Л., Бутин К.П. Органическая химия. В 4-х частях (часть 1-3). Москва. Бином. Лаборатория знаний, 2004 2. Кери Ф., Санберг Р. Углубленный курс органической химии (книга 2). Москва, «Химия», 1981 3. Хейнс А. Методы окисления органических соединений. Москва, «Мир», 1988 4. Моррисон Р., Бойд Р. Органическая химия. Москва, «Мир», 1974 5. Травень В.Ф. Органическая химия (том 1). Москва, «Академкнига», 2004 6. Костиков Р.Р., Кузнецов М.А., Новиков М.С., Соколов В.В., Хлебников А.Ф. Практикум по органическому синтезу, Санкт-Петербург, 2009 7. Вейганд-Хильгетаг. Методы эксперимента в органической химии, Москва, «Химия», 1968 8. Марч Дж. Органическая химия (в 4 томах). Москва, «Мир», 1988 9. Беккер Г., Бергер В., и др. Органикум. Практикум по органической химии (том 1,2). Москва, «Мир», 1979 10. Гауптман З., Грефе Ю., Ремане Х. Органическая химия. Москва, «Химия», 1979 11. Титце Л., Айхер Т. Препаративная органическая химия. Москва, «Мир», 1999 |